Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

Работа выполнена в СКБ

«Проектирование и информационное моделирование зданий и сооружений»

СОГЛАСОВАНО	УТВЕРЖДАЮ
Начальник отдела ОНиПКРС Б.М. Димитриади (подпись) «	Пр <u>оректир по</u> научной работе А.В. Космынин
Декан факультета кадастра и строительства	
— Н.В. Гринкруг (модпись)	
« 05» 02 2024 г.	

«Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения» Комплект конструкторской / проектной документации

Руководитель СКБ		Е.В. Журавлева
	(подпись, дата)	
Руководитель проекта	Juf- (nodnucs, dama)	И.В. Погорельских

Карточка проекта

Название	Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения
Тип проекта	техническое творчество
Исполнители	Студент уж А.А. Сухов – группа 0ПСб-1
Срок реализации	05 февраля — 20 мая

Использованные материалы

Наименование	Количество, шт.
План	1
Разрез	1
Ситуационный план	1

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ЗАДАНИЕ на разработку

Название проекта: «Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения».

Назначение: Проект стройгенплана для сварочного цеха предприятия тяжелого машиностроения Уфа на проспекте Дружбы народов предназначен для определения состава и места размещение объектов строительного хозяйства в целях максимальной эффективности их использования, с учётом требований охраны труда. Стройгенплан — это основной документ, регламентирующий организацию труда на строительной площадке и объёмы временного строительства.

Область использования: будет использован при строительстве производственного цеха в Уфа на проспекте Дружбы народов.

Функциональное описание проекта: обеспечение безопасности производства работ, рациональное размещение грузоподъемного механизма, оптимизация транспортного хозяйства, расчет площади складов, обеспечение комфортных условий труда рабочих.

Техническое описание устройства: разработка строительного генерального плана, на котором размещен объект строительства (производственный цех), выбран грузоподъемный механизм, в неопасной зоне действия крана размещены временные здания и сооружения. Обеспечена пожарная безопасность и безопасность людей участвующих и не участвующих в строительстве.

Требования: обеспечить безопасные условия труда при строительстве объекта, оптимизировать расход ресурсов при возведении производственного цеха в Уфа на проспекте Дружбы народов.

План работ:

Наименование работ	Срок
Расчет транспортного хозяйства	02.2024
Расчет складского хозяйства	02.2024
Расчет водоснабжения	03.2024
Расчет электроснабжения	03.2024
Расчет временных зданий административно- хозяйственного и культурно-бытового назначения	04.2024
Разработка мероприятий по охране труда	04.2024
Расчет технико-экономических показателей	04.2024
Выполнение графической части стройгенплана на листе А1	05.2024

Перечень графического материала:

- 1. Принципиальная схема работы грузоподъёмного механизма;
- 2. Чертежи стройгенплана.

Руководитель проекта Управитель проекта (подпись, дата) И.В. Погорельских

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ПАСПОРТ

«Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения»

Руководитель проекта

(порпись, дата)

И.В. Погорельских

Содержание

Введение	7
1 Описание ситуационного плана	8
2 Природно-климатическое описание района строительства	9
3 Исходные данные для проектирования. Объёмно-планирово	чное реше-
ние	10
4 Конструктивное решение	11
4.1 Фундаменты	11
4.2 Колонны	14
4.3 Стены	15
4.4 Перекрытия	18
4.5 Кровля	18
5 Расчетно-конструктивный раздел	19
5.1 Привязка грузоподъемного механизма на стройгенплане, о	пределение
рабочих и опасных зон действия монтажного крана	19
5.2 Транспортного хозяйства	20
5.3 Расчет складского хозяйства	21
5.4 Расчет водоснабжения	24
5.5 Временные здания административно-хозяйственного и	культурно-
бытового назначения	26
5.6 Расчет электроснабжения	27
5.7 Технико-экономические показатели	29
6 Техника безопасности и охрана труда	30
Заключение	35
Список использованных источников	36

Изм.	Лист.	№ документа	Подп.	Дата.

Введение

Организационно-технологическое проектирование предназначено для разработки оптимальных технологических решений и определения необходимых организационных условий выполнения строительных процессов и работ при возведении зданий и сооружений.

Технологическая документация является частью проектной документации на объект строительства и включает в себя: проект организации строительства (ПОС) — разрабатывается проектной организацией; проект производства работ (ППР) — разрабатывается подрядной организацией или организацией, имеющей лицензию на этот вид деятельности и допуск СРО; технологические карты на сложные строительные процессы; карты трудовых процессов; технологические схемы выполнения процессов.

Строительство любого объекта допускается осуществлять только на основе предварительных решений, принятых в ПОС и ППР. В ПОС разрабатывается, проектируется и увязывается: согласованная работа всех участников строительства объекта с координацией ее генеральным подрядчиком; комплексная поставка материальных ресурсов на все здание, на этаж или на захватку в соответствии с календарным планом производства работ; возведение зданий и сооружений индустриальными методами на основе комплексно поставляемых конструкций или блоков высокой заводской готовности; выполнение строительных, монтажных и специальных работ поточными методами на основе бригадного подряда; высокая технологическая и организационная культура ведения строительных работ и строгое соблюдение правил техники безопасности; соблюдение требований по охране окружающей среды.

Изм.	Лист.	№ документа	Подп.	Дата.

1 Описание ситуационного плана

Участок, выбранный для проектирования, находится в Республике Башкортостан в г. Уфа.

Проектируемый участок располагается около логистической компании Байкалсервис и рынка Евразия (см. рисунок 1). Также недалеко от участка микрорайон Сафроновский (см. рисунок 2).

Рисунок 1 – Ситуационный план

Рисунок 2 – Ситуационный план

					СКБ «ПиИМЗиС».1.TT.050000
Изм.	Лист.	№ документа	Подп.	Дата.	

2 Природно-климатическое описание района строительства

Город Уфа располагается в умеренном поясе, занимает внутриконтинентальное положение с неодинаковым удалением от океанов.

Климат г. Уфы очень своеобразен. Несмотря на принадлежность к зоне умеренных широт, значительной приподнятости над уровнем моря, удаленности от океанов и морей, климат здесь резко-континентальный.

Сухость климата, небольшое количество водяных паров в атмосфере и, соответственно, малая облачность способствует формированию большого количества солнечных дней.

Существование зимних климатических ярусов и преобладание в годовом выводе умеренного континентального воздуха, с которым связана максимальная зимняя континентальность. Все это определяет наибольшую суровость зимних погод и большие суточные и годовые амплитуды воздуха. Климат характеризуется продолжительной, морозной, малооблачной зимой и жарким летом.

На протяжении года выпадает недостаточное количество осадков. Амплитуда суточных и годовых колебаний температуры большая.

В течение года преобладают северо-западные и западные ветра.

Лето короткое и теплое, а в отдельные годы жаркое. Весна короткая, ясная и сухая. Для осени характерны ранние заморозки, ясная и сухая погода.

В условиях Уфы преобладает довольно низкая влажность воздуха. Даже в отдельные годы влажность не превышает 85%, и только иногда ночью может достигать 100%.

Изм.	Лист.	№ документа	Подп.	Дата.

3 Исходные данные для проектирования Объемно-планировочное решение

Разработан механосборочный цех тяжелого машиностроения. Данный цех представляет собой одноэтажное производственное здание средних размеров: длина в осях 108 м; ширина в осях 54 м. Цех предназначен для механической обработки деталей и сборки подъемно-транспортного оборудования.

Цех состоит из 4 отделений: отделение сборки площадью 1296 м^2 ; отделение механической обработки площадью 1944 м^2 ; малярное отделение площадью 648 м^2 ; термическое отделение площадью 1944 м^2 .

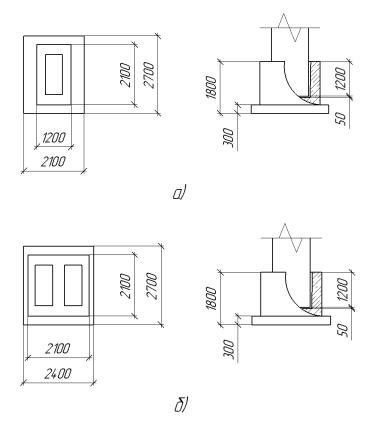
В отделении механической обработки деталей располагаются различного рода станки, а также помещения для заточки инструментов, ремонтные отделения и т.п. После механической обработки заготовки деталей для подъемно-транспортного оборудования поступают в термическое отделение, проходя обработку, их перемещают на специальные сборочные стенды, расположенные в отделении сборки, откуда готовое подъемно-транспортного оборудование направляется в малярное отделение.

Для складирования в продольных пролетах заготовок деталей предусмотрено трое ворот 4,2х4,2 м.

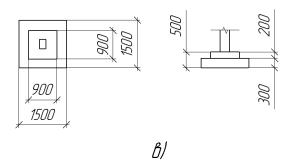
Внутрицеховая транспортировка грузов осуществляется вдоль пролетов мостовыми кранами грузоподъемностью 30 тонн.

Изм.	Лист.	№ документа	Подп.	Дата.

4 Конструктивное решение


4.1 Фундаменты

Фундамент под колонны запроектирован отдельностоящий столбчатый стаканного типа. Отметка верха подколонника принята минус 0,150.


Фундаменты приняты марки ФД7-2 под все колонны, кроме тех, которые располагаются в районе температурного шва. Под колонны, расположенные в районе температурного шва, запроектированы фундаменты марки ФДТ8-2. Для фахверковых колонн приняты фундаменты марки ФА1-1.

Схемы данных фундаментов представлены на рисунке 3.

Фундамент марки Φ Д7-2 имеет размеры подколонника 2100х1200 мм, размеры подошвы 2700х2100 мм; марки Φ ДТ8-2 имеет размеры подколонника 2100х2100 мм, подошвы 2700х2400 мм; марки Φ А1-1 имеет размеры подколонника 900х900 мм, подошвы 1500х1500 мм.

					CVF "FINANC" 4 TT 0500000	Лист
	_				СКБ «ПиИМЗиС».1.TT.05000000	11
Изм	Лист.	№ документа	Подп.	Дата.		77

а) – фундамент марки ФД7-2; б) – фундамент марки ФДТ8-2; в) – фундамент марки ФА1-1 Рисунок 3 - Схемы фундаментов

Глубину заложения фундамента принимаем в соответствии с расчетом:

Рассчитываем нормальный показатель глубины промерзания грунта по формуле

$$D_{\text{fn}} = d_0 {\cdot} \sqrt{M_t};$$

где d_0 – коэффициент, величина которого зависит от вида грунта (для супеси 0,28);

 $\sqrt{M_t}$ — квадратный корень всех минусовых месячных температур в регионе за один календарный год.

На рисунке 4 представлена схема столбчатого фундамента.

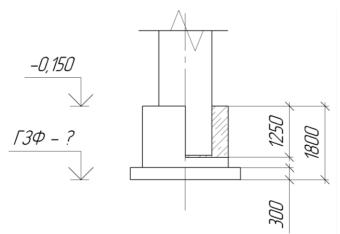


Рисунок 4 — Схема столбчатого фундамента

В таблице 1 представлены среднемесячные температуры в г. Уфа.

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		12

Таблица 1 – Среднемесячные температуры

Месяц	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Нояб.	Дек.
Темп.	-24	-18	-8	+2	+10	+17	+19	+16	+9	-0	-12	-21

$$D_{fn} = 0.28 \cdot \sqrt{24 + 18 + 8 + 12 + 21} = 2.55 \text{ M}.$$

Расчетная глубина промерзания почвы, на основании которой будет определяться глубина заложения фундамента, вычисляется по формуле

$$D_f = k_h \cdot D_{fn}$$
;

где k_h — коэффициент, который отличается для отапливаемых и неотапливаемых зданий (k_h = 0,5).

$$D_f = 0.5 \cdot 2.55 = 1.275 \text{ M}.$$

С учетом нормативного значения глубины промерзания грунта и конструктивных особенностей здания принимаем глубину заложения фундамента равную 1,8 м.

Под сендвич-панели запроектированы фундаментные балки длиной 4 м, 4,3 м, 4,45 м, 4,75 м, трапецеидальным сечением с размерами нижней грани 160 мм, верхней – 200 мм, высотой 300 мм.

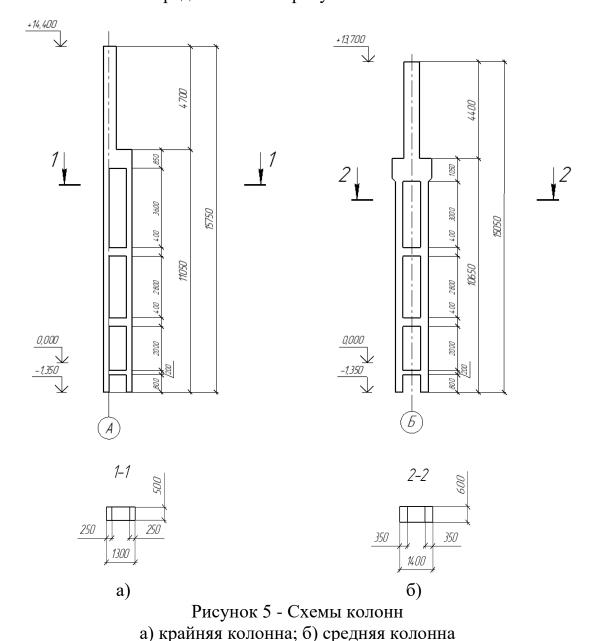
Под ворота запроектирован фундамент ленточный монолитный с шириной блока 500 мм, шириной подушки 2000 мм. Глубина заложения принята как для фундаментов под колонну.

Спецификация фундамента приведена в таблице 2.

Таблица 2 – Спецификация фундаментов

Поз.	Обозначение	Наименование	Кол.							
Фундамент столбчатый										
-		ФД7-2	54							
-	Серия 1.423-3	ФДТ8-2	4							
-		ФА1-1	6							
	Фундамент	гные балки								
-		1БФ40	4							
-	Conv.g 1 415 1 2	1БФ43	8							
-	Серия 1.415.1-2	1БФ45	2							
-		1БФ48	28							
-		МУ-20.100	6							

Вокруг здания устраивается отмостка из асфальтобетона, ширина которой принята 1 м с уклоном от здания 0,002.


	_					
						Лист
					СКБ «ПиИМЗиС».1.ТТ.05000000	
Изм	Лист.	№ документа	Подп.	Дата.		13

4.2 Колонны

Колонны приняты марки КД – колонна двухветвенная для зданий с мостовыми кранами.

Колонны запроектированы в нижней части с двумя ветвями, соединенными распорками. Ветви, распорки и верхняя часть всех колонн имеют сплошное прямоугольное сечение.

Крайние колонны приняты марки КДІІ-15, средние – КДІІ-19. Схемы колонн представлены на рисунке 5.

Лист. № документа Подп. Дата.

СКБ «ПиИМЗиС».1.ТТ.05000000

14

Крайние колонны имеют шаг 6 м, средние – 12 м. Спецификация колонн представлена в таблице 3.

Таблица 3 – Спецификация колонн

Поз.	Обозначение	Наименование	Кол.
_	Серия КЭ-01-52	КДІІ-15	40
-	Серия КЭ-01-32	КДІІ-19	22

С торцевой стороны здания установлены фахверковые колонны, изготовленные из двух швеллеров, с шагом 6 и 12 м. Размер фахверковой колонны возле крайних колонн составляет 400x250 мм, возле ворот и средних колонн – 300x200 мм.

По отношению к продольным осям колонны средних рядов располагаются симметрично, а колонны крайних рядов имеют привязку 250 мм, так как грузоподъемность мостового крана составляет 30 т, шаг крайних колонн равен 6 м, а отметка верха крайних колонн равна 14,4 м.

Первая и последняя колонны каждого продольного ряда в пределах каждого температурного блока имеют привязку к поперечной оси 500 мм [12].

4.3 Стены

По конструктивному типу здание с полным каркасом.

Толщина кирпичной несущей стены в торцевой части здания составляет 510 мм. Толщину ненесущих стеновых сендвич-панелей определяем при помощи теплотехнического расчета.

Теплотехнический расчет:

Район строительства – г. Уфа. Режим помещений – нормальный. Зона влажности – сухая. Условия эксплуатации материала – А.

Необходимо определить толщину сендвич-пенели. Для этого необходимо найти толщину утеплителя. За утеплитель принимается минераловатная плита с коэффициентом теплопроводности $\lambda = 0.042~\mathrm{Bt/(m\cdot ^{\circ}C)}$.

Схема конструкции наружной стены представлена на рисунке 6.

					CVE FINANCIA TT 0500000	Лист
Изі	л. Лист.	№ документа	Подп.	Дата.	СКБ «ПиИМЗиС».1.ТТ.05000000	15

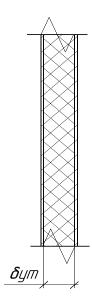


Рисунок 6 - Расчетная схема конструкции наружной стены

Фактическое сопротивление теплопередаче ограждающих конструкций R_0 должно быть не менее нормируемого приведенного сопротивления теплопередаче R_{req} .

По результатам теплотехнических расчетов ограждающих конструкций определяется фактическое сопротивление теплопередаче ограждающих конструкций.

Требуемое сопротивление теплопередачи ограждающих конструкций, отвечающее санитарно-гигиеническим и комфортным условиям

$$R_{req} = \frac{n \cdot (t_{B} - t_{H})}{\Delta t_{n} \cdot \alpha_{int}},$$

где n - коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n=1 для наружной стены;

 Δt_n - нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, $\Delta t_n = 3.1\,^{\circ}\mathrm{C}$ для наружной стены;

 α_{int} - коэффициент тепловосприятия внутренней поверхности ограждающих конструкций, принимаем 8,7 Bt/(м².°C);

						_
						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
					CND «TIUVIIVISUC».T.TT.USUUUUU	
Изм	. Лист.	№ документа	Подп.	Дата.		16

 $t_{\scriptscriptstyle H} =$ -38 °C - расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92;

 $t_{\scriptscriptstyle B} = 20~^{\circ}{\rm C}$ - расчетная температура внутреннего воздуха.

$$R_{req} = \frac{1 \cdot (20 \cdot (-38))}{3.1 \cdot 8.7} = 2,15 \text{ (m}^2 \cdot {}^{\circ}\text{C})/B_{T}.$$

Нормируемое приведенное сопротивление теплопередаче принимается по величине градусо-суток отопительного периода. Находим градусо-сутки отопительного периода:

$$\Gamma CO\Pi = (t_B - t_{ht}) \cdot Z_{ht},$$

где $Z_{ht} = 238$ сут. - продолжительность периода со средней суточной температурой воздуха;

 $t_{ht} = -11,2\ ^{\circ}\mathrm{C}$ - температура отопительного периода со средней суточной температурой воздуха.

$$\Gamma \text{CO\Pi} = (20 - (-11,2)) \cdot 238 = 7425,6 \, ^{\circ}\text{C} \cdot \text{cyt}.$$

Значения нормируемого приведенного сопротивления теплопередаче принимаем по формуле

$$R_{req} = a \cdot \Gamma CO\Pi + b$$
,

где a = 0,0002 и b = 1 — коэффициенты, принятые для промышленного здания.

$$R_{reg} = 0.0002 \cdot 7425.6 + 1 = 2.485 \, (\text{m}^2 \cdot ^{\circ}\text{C})/\text{Bt}.$$

Для дальнейших расчетов принимаем $R_{req} = 2,485 \text{ (м}^2 \cdot {}^{\circ}\text{C})/\text{Bt}$.

Определяем толщину утеплителя из формулы

$$R_0 = \frac{1}{\alpha_B} + \frac{\delta_{yr}}{\lambda_{yr}} + \frac{1}{\alpha_H},$$

где $\alpha_{\rm H} = 23~{\rm BT/(m^2 \cdot ^{\circ}C)} - коэффициент теплоотдачи наружной поверхности ограждающих конструкций.$

$$R_0 = \frac{1}{8.7} + \frac{x}{0.042} + \frac{1}{23};$$

$$R_0 \ge R_{\text{req}};$$

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		17

$$0,115 + \frac{x}{0,042} + 0,043 \ge 2,485;$$

 $x = 0,097 \text{ m} = 97 \text{ mm}.$

По каталогу подбираем марку сендвич-панели с подходящей толщиной утеплителя: принимаем общую толщину панели 100 мм.

4.4 Перекрытия

В качестве перекрытия для промышленного здания приняты ребристые плиты с высотой 300 мм, шириной 3 м и длиной 6.

В местах установки фонарей приняты плиты перекрытия 6 м с квадратным отверстием размером 1800х1600 мм.

В местах установки вентиляции приняты плиты с круглым отверстием диаметром 1000 мм.

Спецификация плит перекрытий представлена в таблице 4.

Таблица 4 – Спецификация плит перекрытий

Поз.	Обозначение	Наименование	Кол.
1	ГОСТ 2201.1-77	ΠΓ-2 ΑτVτ	276
2	1 OC 1 2201.1-//	ПВ-10-2 AтVт (АШвт)	

4.5 Кровля

Для здания применена плоская неэксплуатируемая кровля, которая состоит из таких слоев, как: стяжка (10 мм); праймер, пароизоляция (0,2 мм), теплоизоляция из каменной ваты (100 мм), разуклонка из керамзита, стяжка (30 мм), праймер, трехслойный ковер из рубероида (9,5 мм).

Уклон крыши 0,015. Также на крыше имеется парапет высотой 1,2 м.

Водоотвод является внутренним организованным. На крыше расположены 32 воронки диаметром 100 мм, в которые поступает вода. Рядом с воронками на расстоянии 1 м установлены воздуховоды. Шаг воздуховодов и воронок принят 12 м.

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		18

5 Расчетно-конструктивный раздел

Строительный генеральный план (стройгенплан) — это план строительной площадки, на котором нанесены строящиеся и существующие здания и сооружения, рабочие и опасные зоны действия механизмов, инвентарные здания и сооружения, постоянные и временные дороги, площадки разгрузки строительных материалов, склады, наружные временные и постоянные сети, подкрановые пути, пути движения самоходных кранов, площадки укрупнительной сборки, стационарные и передвижные механизированные установки и др.

В данной работе разрабатывается объектный стройгенплан на монтаж стропильной системы.

Расчет стройгенплана производится по следующим элементам строительного хозяйства: складское, транспортное, водо- и энергоснабжение, временные здания административно-хозяйственного и культурного назначения.

5.1 Привязка грузоподъёмного механизма на стройгенплане, определение рабочих и опасных зон действия монтажных кранов

Для монтажа стропильной системы был выбран кран РДК-25.

Рассчитываем рабочею зону действия крана — это зона возможного перемещения груза, в которой возможно падение мусора, инструментов и т.п. находящихся на грузе. В рабочей зоне действия крана могут находиться только обученные и аттестованные рабочие участвующие непосредственно в технологическом процессе в соответствии с технологической картой.

$$P_3 = l_{\text{выл.}} + 0.5 \cdot l_{\text{гр.}},$$

$$O_3 = l_{\text{стр.}} + 0.5 \cdot l_{\text{гр.}} + l_6,$$

где $l_{\text{выл.}}$ - минимальный вылет стрелы для данных работ, м;

 $1_{\text{гр.}}$ – максимальная длина груза, м.

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		19

$$P_3 = 6 + 0.5 \cdot 18 = 15 \text{ m}.$$

Опасная зона действия возникает при аварии крана (обрыв вант, обрыв грузозахватного приспособления, падение стрелы, опрокидывание крана и т.п.) и возможна гибель людей. В опасной зоне действия крана могут находиться только обученные и аттестованные рабочие участвующие непосредственно в технологическом процессе в соответствии с технологической картой.

$$O_3 = I_{crp.} + 0.5 \cdot I_{rp.} + I_6,$$

где $l_{\text{стр.}}$ – максимальная длина стрелы, м;

 $l_{\rm 6}$ – дополнительное расстояние безопасной работы, установленный по (5,5 м), м.

$$O_3 = 17.5 + 0.5 \cdot 18 + 5.5 = 35.5 \text{ M}.$$

Рабочая зона крана действия крана составила 15 м, опасная зона – 32 м.

5.2 Транспортное хозяйство

Временные дороги на строительной площадке предназначены для доставки строительных материалов на приобъектный склад, с которого будет непосредственно производиться монтаж конструкций или расходование материалов на выполнение строительно-монтажных работ, исключая дополнительные погрузо-разгрузочные работы. Поэтому временные дороги и разгрузочные площадки привязываются к строящимся зданиям, приобъектным складам, рабочим зонам действия монтажных кранов. Площадки разгрузки строительных материалов размещаются в рабочих зонах действия монтажных кранов. Транспортирование всех материалов и изделий осуществляется специальной организацией, следовательно, на строительной площадке никаких транспортных сооружений не возводится, устраиваются только транспортные пути.

						Лист			
					CVE " $\Pi \cup IMM2 \cup C$ " 1 TT 05000000				
					СКБ «ПиИМЗиС».1.TT.05000000	1			
Изм.	Лист.	№ документа	Подп.	Дата.		20			

Временные автомобильные дороги в пределах площадки устраиваются шириной 3,5–6 м. При использовании тяжелых машин грузоподъемностью 25–30 т и более ширина проезжей части увеличивается до 8 м. Организация движения на временных дорогах должна исключать образования заторов и пробок.

На участках дорог, где организовано одностороннее движение по кольцу, в пределах видимости, но не менее чем через 100 м, устраивают площадки – уширения шириной 6 м и длиной 12–18 м.

Такие же площадки выполняются в зоне разгрузки материалов (в рабочей зоне действия монтажных кранов) при любой схеме движения автотранспорта.

Минимальный радиус закругления для строительных проездов составляет 12 м.

5.3 Расчет складского хозяйства

Чтобы определить площадь любого склада, необходимо знать удельные нормы складирования материала на единицу площади склада и норму запаса в днях в зависимости от расстояния возки (см. таблицу 5), а также среднесуточный расход материала.

Таблица 5 — Нормы запаса материалов при доставке автомобильным транспортом

Материал	Нормы запаса, дн.	Дальность возки, км
IIIofayy manyy wasay	2-3	До 15
Щебень, гравий, песок	3-5	Более 15
Помонт нарасти кнагин	4-6	До 15
Цемент, известь, кирпич	6-8	Более 15
Сталь сортовая, арматурная	5-7	До 15
и прочная	7-10	Более 15
Сборные железобетонные	3-5	До 15
конструкции	5-8	Более 15
Посоможения	10-15	До 15
Лесоматериалы	13-17	Более 15

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		21

В данной работе дальность возки составляет 7 км, значит норма запаса для сборных железобетонных элементов составляет 3-5 суток.

Среднесуточный расход материала зависит от количества рабочих (расходующих данный материал) в бригаде сложившейся выработки на человека в смену и можно определить по формуле

$$g = \frac{Q}{T} \cdot k_2,$$

где Q – общий объем материала, необходимого для строительства;

Т – число дней потребления (срок использования этого материала с графика производства работ);

 ${
m k}_2$ — коэффициент неравномерности использования материалов (${
m k}_2$ = 1,2–1,5).

По среднесуточному расходу материала и ориентировочным нормам запаса можно определить количество материала, подлежащего хранению на складе (с учетом коэффициента неравномерности поступления материала на склад)

$$Q = g \cdot n \cdot k_1$$
,

где k_1 – коэффициент неравномерности поступления материала на склад (k_1 = = 1,1–1,2);

n – норма запаса материала, дн.

Площадь склада без учета проходов и проездов можно определить по формуле

$$S_{\text{пол}} = \frac{Q_{\text{скл}}}{g_1},$$

где g_1 – количество материала, укладываемого на 1 м 2 полезной площади склада.

Общую площадь склада можно определить по формуле

$$S_{\text{общ}} = \frac{S_{\text{пол}}}{k_{c\kappa}},$$

где $S_{\text{пол}}$ – полезная площадь склада, M^2 ;

						Лист
					СКБ «ПиИМЗиС».1.ТТ.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		22

 $k_{\rm ck}$ – коэффициент использования площади складов (с учетом проходов, проездов, мест для сортировки, комплектации, упаковки) ($k_{\rm ck}=0.5-0.6$, см. таблицу 10).

Тип склада принят открытый. По подсчитанной площади склада назначаются его размеры в зависимости от радиуса действия погрузоразгрузочных средств. Внутриплощадочные дороги также должны быть в радиусе действия от крана.

Штабеля с тяжелыми элементами следует размещать ближе к путям монтажного крана, а с более легкими – в глубине склада. Между штабелями на складах строительной площадки должны быть продольные и поперечные проходы шириной не менее 0,7 м. Продольный проход должен быть устроен посередине складской площадки, а поперечные – примерно через каждые 25–30 м.

От края дороги штабель должен отстоять не менее на 0,5 м. Расчет площадей складов производится по таблице 6.

Таблица 6 – Расчет площадей складов

ование	ование иала цая ность		запас, дн.	э материа- ежащих :нию	ранения М ²	сент скла- ания	Площ	адь скла	адов, м ²	клада
Наименование материала	Общая потребность	Наибольший суточ- ный расход материа- ла	Принятый запас, дн.	Количество материа- лов подлежащих хранению	Норма хранения на 1 м²	Коэффициент скла- дирования	Полезная	Полная расчет- ная	Принятая	Тип склада
1	2	3	4	5	6	7	8	9	10	11
Подкрано- вые балки	50,4 m ³ - 6 m; 73,8 m ³ - 12 m	$ \frac{50,4}{47} \cdot 1,35 = 1,45 \text{ m}^3 \frac{73,8}{47} \cdot 1,35 = 2,12 \text{ m}^3 $	4	$ \begin{array}{c} 1,45 \cdot 4 \cdot \\ \cdot 1,15 = \\ 6,67 \text{ m}^3 \\ 2,12 \cdot 4 \cdot \\ \cdot 1,15 = \\ 9,75 \text{ m}^3 \end{array} $	0,3-0,4	0,5- 0,6	$\frac{6,67}{0,35} = 19,1$ $\frac{9,75}{0,35} = 27,9$	$\frac{\frac{19,1}{0,55}}{34,7} = \frac{34,7}{\frac{27,9}{0,55}} = \frac{50,7}{100}$	11x8 = 88	откры кры- тый
Подстро- пильные балки	86,4 м ³	$\frac{86,4}{47} \cdot 1,35 = 2,48 \text{ m}^3$	4	$ \begin{array}{c} 2,48 \cdot 4 \cdot \\ \cdot 1,15 = \\ 11,41 \text{ m}^3 \end{array} $	0,3-0,4	0,5- 0,6	$\frac{11,41}{0,35} = 32,6$	$\frac{32,6}{0,55} = 59,3$	10x6 = 60	откры кры- тый
Стропиль- ные балки	275,88 _M ³	$\frac{57}{47} \cdot 1,35 = 1,64 \text{ m}^3$	4	$1,64 \cdot 4 \cdot 1,15 = 7,54 \text{ m}^3$	0,2-0,3	0,5- 0,6	$\frac{7,54}{0,25} = 30,2$	$\frac{30,2}{0,55} = 54,9$	11x5 = 55	откры кры- тый
Плиты по- крытия	346,68 _M ³	$\frac{324}{47} \cdot 1,35 = 9,31 \text{ m}^3$	4	$9,31 \cdot 4 \cdot 1,15 = 42,83 \text{ m}^3$	0,45- 0,5	0,5- 0,6	$\frac{42,83}{0,47} = 91,1$	$\frac{91,1}{0,55} = 165,6$	13x13 = 169	откры кры- тый

Изм.	Лист.	№ документа	Подп.	Дата.

5.4 Расчет водоснабжения

При разработке ППР количество воды определяют по удельным расходам на каждого потребителя (на строительные процессы, для нужд рабочих, для заправки двигателей внутреннего сгорания, на душевые установки, на случай пожара). При определении общей потребности в воде, как правило, берут смену с наибольшим водопотреблением.

При этом на каждого потребителя в отдельности определяют необходимое количество воды по рабочим чертежам, по календарному плану строительства:

1. На хозяйственно-питьевые нужды

$$g_{xo3} = \frac{b \cdot N_1 \cdot k_{yac}}{3600 \cdot n},$$

где b – норма расхода воды на одного человека при наличии канализации 20–25 л, при отсутствии – 10–15 л;

 N_1 — число работающих в смену (смена с максимальным числом рабочих) берется с графика движения рабочих;

 $k_{\text{час}}$ — коэффициент часовой неравномерности водопотребления (при наличии канализации $k_{\text{час}} = 2$, при отсутствии — $k_{\text{час}} = 3$);

3600 – коэффициент, позволяющий получить единицы физической величины, л/с;

n – продолжительность рабочей смены (принимаем 8,2 ч).

$$g_{xo3} = \frac{20 \cdot 24 \cdot 2}{3600 \cdot 8,2} = 0,033 \text{ m/c}.$$

2. На душевые установки

$$g_{\text{душ}} = \frac{c \cdot N_1}{60 \cdot m},$$

где с – расход воды на одного рабочего, принимающего душ (принимается 30–40 л/смену);

 N_1 — число рабочих, принимающих душ (обычно берется 30–50 % от максимального числа рабочих в смену);

					CVC	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	СКБ «ПиИМЗиС».1.ТТ.05000000	24

60 – переводной коэффициент;

m – продолжительность работы душевой установки (обычно принимается 45 мин. между сменами или после смены).

$$g_{\text{душ}} = \frac{30 \cdot 12}{60 \cdot 45} = 0,133 \text{ д/c.}$$

Душевые установки обычно проектируются на строительных площадках, имеющих постоянную канализацию.

3. На производственно-строительные нужды расход воды рассчитывается по формуле

$$g_{\pi p} = \frac{S \cdot A \cdot k_{\text{vac}}}{3600 \cdot n_1},$$

где S – удельный расход воды на производственно-строительные нужды, π/m^2 (см. таблицу 12);

A – производительность установки, потребляющей воду, либо объем работ, выполняемых в смену;

 $k_{\rm vac}$ — коэффициент часовой неравномерности потребления (на строительные нужды $k_{\rm vac}$ = 1,5, на транспортное хозяйство $k_{\rm vac}$ = 1,5–2);

 n_1 — число часов работы машин либо продолжительность рабочей смены (для строительных процессов).

$$g_{\pi p} = \frac{35 \cdot 108 \cdot 1,5}{3600 \cdot 8,2} = 0,192 \text{ m/c}.$$

4. Потребное количество воды на случай тушения пожара зависит от размеров строительной площадки, степени огнестойкости и категории пожарной опасности производства, объема зданий и сооружений, находящихся на строительной площадке.

Расход воды для тушения пожара зависит от площади застраиваемой территории. Принимаем расход воды для тушения пожара 10 л/с (см. таблицу 13).

На строительной площадке в свободных от застройки и складирования местах устраивают пожарные гидранты, не менее двух в 4–6 м от дороги.

Общий расход воды на строительство определяют по формуле

						Пиот
					СКБ «ПиИМЗиС».1.ТТ.05000000	Jlucm
					CND «TIUVIIVIOUC».T.TT.00000000	
Изм.	Лист.	№ документа	Подп.	Дата.		25

$$Q_{\text{расч}} = g_{\text{хоз}} + g_{\text{душ}} + g_{\text{пр}} + g_{\text{пож}},$$

$$Q_{\text{расч}} = 0.033 + 0.133 + 0.192 + 10 = 10.385 \text{ л/c}.$$

По общему расходу воды нужно определить диаметр труб, пользуясь формулой

$$d = \sqrt{\frac{4 \cdot Q_{\text{pacq}} \cdot 1000}{\pi \cdot V}},$$

где V – расчетная скорость движения воды по трубам;

 π - длина окружности ≈ 3,14.

$$d = \sqrt{\frac{4 \cdot 10,358 \cdot 1000}{3,14 \cdot 1,8}} = 85,7 \text{ mm}.$$

Из условия размещения пожарных гидрантов принимаем d = 100 мм.

5.5 Временные здания административно-хозяйственного и культурно-бытового назначения

Определение площадей временных зданий и сооружений производят по максимальной численности работающих на строительной площадке и нормативной площади на одного человека.

Численность работающих определяют по формуле

$$N_{\text{общ}} = k \cdot (N_{\text{раб}} + N_{\text{итр}} + N_{\text{служ}} + N_{\text{моп}}),$$

где $N_{\text{общ}}$ – общая численность работающих на строительной площадке;

k – коэффициент, учитывающий отпуска, болезни, выполнение общественных обязанностей (k = 1,05-1,06);

 $N_{\text{раб}}$ – численность рабочих;

 $N_{\text{итр}}$ – численность инженерно-технических работников (ИТР);

 $N_{\text{служ}}$ – численность служащих;

 $N_{\mbox{\tiny{MO\Pi}}}$ – численность младшего обслуживающего персонала (МОП) и охраны.

Численность ИТР, служащих и МОП определяют по таблице 16

:
$$N_{\text{раб}} = 24$$
 чел., $N_{\text{итр}} = 3$ чел.; $N_{\text{служ}} = 3$ чел., $N_{\text{моп}} = 1$.

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		26

$$N_{\text{общ}} = 1,05 \cdot (24 + 3 + 3 + 1) = 33 \text{ чел.}$$

На основании установленной численности списочного состава рассчитывают необходимые площади культурно-бытовых и административно-хозяйственных зданий (см. таблицу 7), исходя из нормативов таблицы 17.

Таблица 7 – Расчет площадей временных зданий

Временные	Кол-во рабо-	Площадь пом м ²	ещения,	Тип времен-	Размеры	Кол-	
здания	тающих, чел.	На одного работающего	Общая	ного здания	в плане, пог. м	во, шт.	
1	2	3	4	5	6	7	
Прорабская	3	4,8	14,4	контейнер	6x3	1	
Гардеробная	33	1,5	49,5	контейнер	9x3	2	
Помещение для собраний	33	0,9	29,7	контейнер	9,6x3,2	1	
Душевая	33	0,48	15,84	контейнер	6,7x3	2	

Продолжение таблицы 7

Туалет	33	2 очка на 30 чел.	4 шт.	контейнер	2,4x1,2	2
Столовая	33	1 место на 4 чел.	9 мест	передвижной	10,6x3,1	1
Сушилка	33	0,2	6,6	контейнер	6x3	2

5.6 Расчет электроснабжения

На строительной площадке электроэнергия расходуется на:

- питание электродвигателей,
- технологические нужды,
- наружное, внутреннее, аварийное, охранное освещение.

Расчёт потребности электроэнергии производится на основе сетевого графика и графика работы машин и механизмов. На графике выбираем период с наибольшим расходом электроэнергии для всех нужд. Для случая максимального потребления электроэнергии одновременно всеми потребителями, общая суммарная потребность мощности в кВт определяется:

$$P = 1.1 \cdot \left(\frac{k_1 \cdot \sum P_b}{\cos \omega} + \sum P_{\pi p} + \sum P_{oB} \cdot k_2 + \sum P_{oH} \cdot k_3 \right),$$

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		27

- где 1,1 коэффициент потери мощности в сети;
- P_{b} сумма номинальных мощностей всех установленных силовых потребителей;
- ${
 m P}_{
 m np}$ потребная мощность непосредственно для производственных нужд, кВт;
- ${
 m P}_{{
 m o}{
 m B}}$ общая мощность осветительных приборов для внутреннего освещения, кВт;
 - P_{oh} то же для наружного освещения, кВт;
- $\cos \varphi$ коэффициент мощности, зависящий от количества и загрузки силовых потребителей; принимается для временного построечного электроснабжения в среднем 0,75;
- k_1, k_2, k_3 коэффициент спроса, учитывающий несовпадение по времени включения отдельных потребителей (принимается по таблице 14).
- 1) Силовые потребители P_b : разные мелкие механизмы и инструменты: 90 кВт; сварочный аппарат: 2.42 кВт = 84кВт; насосы и компрессоры: 110 кВт. Итого: 284 кВт.
- 2) Для производственных нужд P_{np} : установка электропрогрева мощностью 500 кВт.
- 3) Освещение внутреннее, P_{ob} . Для расчета внутреннего освещения необходимо определить мощность электроэнергии, которая указана в таблице 8.

Таблица 8 – Расчет мощности

Потребители	Удельная мощность 1 м ² площади, Вт/м ²	Площадь потре- бителей, м ²	Мощ- ность, Вт
Конторские и общественные помещения	15	238,64	3579,6
Монтаж строительных конструкций	15	5832	87480
Всего	-	-	91059,6

Общая мощность при расчете внутреннего освещения равна $P_{\text{ов}} = 91,1 \text{ kBt}.$

						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
Изм.	Лист.	№ документа	Подп.	Дата.		28

4) Освещение наружное, Рон:

Высота прожекторной установки:

$$h_{\pi p} = h_{3\pi} + 5 M$$
,

где $h_{3\pi} = 18 \text{ м}$ — наиболее высокая отметка здания.

$$h_{np} = 18 + 5 = 23 \text{ M}.$$

По справочнику подбираем прожекторную установку ПСМ–50–6 мощностью 700 Вт; высота прожекторной установки h = 20 м; количество ламп на одной установке – 6 шт., общая мощность двух установок:

$$P_{OH} = 700 \cdot 6.2 = 8400 BT = 8.4 \text{ kBT}.$$

Суммарная потребная мощность:

$$P = 1,1 \cdot \left(\frac{1 \cdot 284}{0,75} + 500 + 91,1 \cdot 0,8 + 8,4 \cdot 1,08\right) = 1056,68 \text{ kBt}.$$

Для временного электроснабжения строительных площадок наиболее целесообразным является применение инвентарных переносных трансформаторных подстанций.

Для питания строительства с потребной мощностью 1056,68 кВт принимаем одну СКТП–750 мощностью 1000 кВА.

5.7 Технико-экономические показатели

Технико-экономические показатели по стройгенплану приведены в таблице 9.

Таблица 9 – Технико-экономические показатели по стройгенплану

№ п/п	Наименование	Ед. изм.	Кол-во
1	Площадь строительной площадки	M ²	21195,6
2	Площадь складов открытого типа	M^2	1191,6
3	Площадь временных зданий	M^2	238,64
4	Протяженность водопровода	M	43
5	Протяженность теплотрассы	M	85
6	Протяженность канализационной сети	M	52
7	Ограждение строительной площадки	M	619,2
8	Протяженность дорог	M	961,3

							Лист
						СКБ «ПиИМЗиС».1.ТТ.05000000	
ν	1зм.	Лист.	№ документа	Подп.	Дата.		29

6 Техника безопасности и охрана труда

- 1.Общие требования безопасности
- 1.1. К самостоятельным работам по монтажу допускаются лица не моложе 18 лет, прошедшие обучение и получившие удостоверение на право производства работ.
- 1.2. К самостоятельным верхолазным работам допускаются лица не моложе 18 лет и не старше 60 лет, прошедшие медицинский осмотр, имеющие стаж верхолазных работ не менее 1 года и разряд не ниже третьего.
- 1.3. Монтажник обязан выполнять правила внутреннего трудового распорядка и указания мастера; выполнять требования знаков безопасности, выполнять только ту работу, по которой проинструктирован; пользоваться защитной маской; оказать первую помощь пострадавшему.
- 1.4. Рабочие обеспечиваются средствами индивидуальной защиты (спецодежда, спецобувь, предохранительные приспособления) и средствами малой механизации (мачты, лебедки, домкраты), грузозахватными приспособлениями, необходимым ручным инструментом.
 - 1.5 Монтажник должен:
 - постоянно содержать в чистоте и порядке свое место;
- в зимнее время рабочее место очищать от снега и льда, проходы и проезды посыпать песком;
- инструменты, приспособления располагать в удобном и безопасном месте.
- 1.6. При производстве монтажных работ факторами травматизма могут быть: обрушение монтируемых элементов во время подъема, падение смонтированных конструкций, падение людей с высоты.
- 1.7. О каждом несчастном случае пострадавший или очевидец должен немедленно известить мастера или руководитель работ.

						Лист
					СКБ «ПиИМЗиС».1.ТТ.05000000	
					CKB «TIUVIIVISUC».T.TT.05000000	1
Изм.	Лист.	№ документа	Подп.	Дата.		30

- 1.8. При несчастных случаях очень важно до приезда врача своевременно оказать первую помощь пострадавшему.
- 1.9. На участке необходимо иметь аптечку с перевязочными материалами и медикаментами, а также носилки для переноски пострадавшего.
- 1.10. Своевременно сообщить о несчастном случае в медицинское учреждение.
- 1.11. Каждый рабочий обязан знать и строго соблюдать правила пожарной безопасности. Выбор средств и способа тушения зависит от характера пожара, его размер, скорости распространения огня и наличия средств пожаротушения.
 - 1.12. Курение допускается только в специально установленных местах.
- 1.13. Проходы к пожарным щитам, огнетушителям, гидрантам и емкостям с водой не должны загромождаться.
- 1.14. Нарушение трудовой дисциплины и требований безопасности ведет к дисциплинарным взысканиям (замечание, выговор, строгий выговор, перевод на нижеоплачиваемую работу на срок до трех лет).
 - 2. Требования безопасности перед началом работы
- 2.1. Получить от мастера инструктаж о безопасных способах выполнения полученного задания; надеть положенную одежду, спецобувь, и предохранительные приспособления, надеть защитную каску.
- 2.2. При работе на высоте монтажник должен надеть предохранительный пояс, убедиться в его исправности, наличия на нем даты последнего испытания (производится через 6 месяцев).
- 2.3. Взять нужный для выполняемой работы исправный инструмент, проверить их исправность и сложить в портативный ящик или сумку.
- 2.4. Закрепиться предохранительным поясом в местах, указанных мастером (прорабом), за надежные элементы конструкций.
- 2.5. Предупредить работающих внизу, чтобы все вышли из опасной зоны.

						Лист
					СКБ «ПиИМЗиС».1.ТТ.05000000	
					CKB «TIUVIIVISUC».T.TT.05000000	1
Изм.	Лист.	№ документа	Подп.	Дата.		31

- 3. Требования безопасности во время работ
- 3.1. При установке элементов монтажники должны находиться на перекрытиях, лесах, инвентарных подмостях.
- 3.2. При перемещении конструкций монтажник обязан находиться вне контура устанавливаемой конструкции со стороны, противоположной подаче их краном.
 - 3.3. При монтаже конструкций необходимо:
- предварительно до подъема проверить правильность сопряжения отдельных узлов;
- поднять конструкцию на высоту 10-15 см, проверить состояние натяжения и отсутствие перекосов;
- 3.4. Запрещается оставлять поднятые конструкции и их элементы на весу;
- 3.5. Расстановку установленных элементов и конструкций разрешается после прочного и устойчивого их закрепления;
 - 3.6. Запрещается:
- гнуть монтажные закладные петли до установки элементов в проектное положение;
- производить наружные монтажные работы во время грозы, гололеда, тумана, при ветре силой 12 м/с и более;
- находиться на элементах во время их подъема, перемещения и установки; а также допускать их подъема или перемещения, если на них находятся другие лица;
 - находиться под поднятыми грузами;
 - оттягивать груз во время его подъема;
 - оставлять поднятые и незакрепленные элементы конструкций;
- пользоваться забракованными стропами, грузозахватными приспособлениями;

-			ı			
						Лист
					СКБ «ПиИМЗиС».1.TT.05000000	
					CND «TIUVIIVISUC». T. TT. USUUUUU	1
Изм.	Лист.	№ документа	Подп.	Дата.		32

- производить зацепку поддонов со штучными грузами без ограждений на поддонах.
- 3.7. При выполнении работ в особо опасных и особо вредных местах следует строго выполнять требования наряда-допуска, определяющего безлопастные условия работы.
 - 4. Требования безопасности в аварийных ситуациях
- 4.1. При производстве монтажных работ аварийные ситуации это обрушение монтируемых элементов во время подъема, падение смонтированных конструкций падение людей с высоты, ушибы, ссадины о неровные края конструкций, засорение глаз.
- 4.2. При ушибах обеспечить пострадавшему полный покой, положить на место ушиба холодный компресс. При ушибах со ссадинами не следует класть примочки: ушибленное место следует смазать настойкой йода и наложить повязку.
- 4.3. При растяжении связок поднять больную конечность вверх, наложить компресс и создать полный покой до прибытия врача.
- 4.4. При вывихах сделать поддерживающую повязку, обеспечивающую неподвижность конечности, и применить холодную примочку. Без врача суставы не выправлять.
- 4.5. При переломах наложить шины так, чтобы они закрывали два ближайших к перелому сустава Шины прибинтовать к конечностям При открытых переломах следует, прежде всего, наложить на рану стерильную повязку.
- 4.6. При ранениях смазать кожу вокруг раны йодной настойкой и перевязать рану, нельзя прикасаться к ране руками, промывать её водой.
- 4.7. При кровотечениях немедленно остановить кровотечение. Наложить на рану давящую повязку.
- 4.8. При засорении глаз промыть водой глаза раствором бромной кислоты или чистой кипяченной водой нельзя тереть глаза рукой.

					CVC	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	СКБ «ПиИМЗиС».1.ТТ.05000000	33

- 5. Требования после окончания работ
- 5.1. Привести в порядок рабочее место, удалить посторонние предметы и материалы с проходов и проездов, устойчиво уложить детали и элементы конструкций.
- 5.2. Убрать рабочий инструмент, смазать и сдать его на хранение в специально отведенное место.
 - 5.3. О всех замеченных неполадках сообщить мастеру (прорабу).

Изм.	Лист.	№ документа	Подп.	Дата.

Заключение

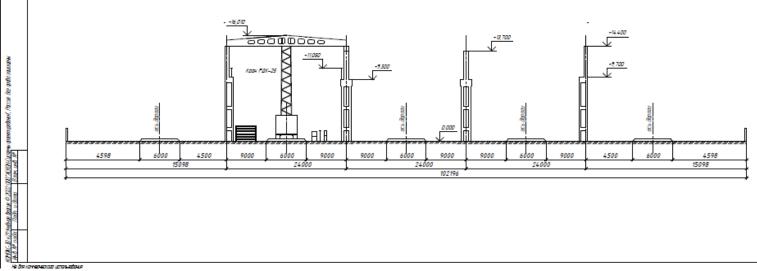
Совершенствование организации планирования на строительных предприятиях обеспечивает их быстрое развитие и повышение эффективности производства, его всестороннюю интенсификацию, рост производительности труда, увеличение прибыли и ресурсосбережение.

Повышение качества планирования обеспечивает высокую трудовую дисциплину на предприятии, создает благоприятные условия для высокой производительности труда, последовательного осуществления принципа распределения заработной платы в соответствии с затраченным трудом, а также принципа социальной справедливости и условий охраны труда.

Неритмичный характер строительного производства, обусловленный объективными факторами, придает первостепенное значение улучшению культуры организационно-технологического проектирования строительных процессов. Новое экономическое мышление, высокая ответственность инженерных кадров и строгая организационно-технологическая дисциплина производства помогут сделать строительное производство устойчивым и высокорентабельным.

Изм.	Лист.	№ документа	Подп.	Дата.

Стройгенплан М1:500


Условные обозначения

•	стоянка крана
	открытый склад плит пакрытия
	открытый склад страпильных балак
	открытый склад подстрапильных балак
	фременная дарага
1	площадка для астановки
	бременные здания
	рабочая зона действия крана
	опасная зана действия крана
шшышш	забар
-⊶	линия электрапередач
	подстанция понижающая
Φ:	пражектор
	δοδοπροδοθ
	канализацианная сеть
→	теплосеть
- 5-	пажарный гидрант
	мойка колес

Экспликация временных зданий

Nº n∕n	Наименабание	Тип временного здания	Кал-да рабочих чел	Размеры в плане	Плащадь. м 2
1	Прарабская	кантейнер	3	6x3	18
2	Гардерабная	кантейнер	33	19x3lx2	<i>5</i> 4
3	Помещение Вля собраний	кантейнер	33	9.6x3.2	30,72
4	Душевая	контейнер	33	16. 7x31x2	40,2
5	Туалет	кантейнер	33	12,4x1,21x2	5.76
6	Сталовая	передбихной	33	10,6x3,1	32.86
7	Сушилка	кантейнер	33	16x3lx2	<i>36</i>

Разрез 1-1 М1:200

Паспорт стройгенплана

Nº n∕n	Наименование	Ей изм.	Кал-ва
1	Плащадь страительной плащадки	m 2	21195,6
2	Плащадь складай открытага типа	M 2	1191,6
3	Плащадь бременных зданий	M 2	238,64
4	Протяженнасть вадаправада	м	43
5	Протяженность теплотрассы	М	85
6	Протяженность канализационной сети	м	52
7	Ограждение строительной площадки	М	619,2
8	Пратяженнасть дараг	м	9613

F						СКБ «ПиИМ3иС».1	.1.TT.05000000			
						0	Outbox	Мосса	Могановб	
Han	r. Korys	ALC:	Mar.	Holm	Дото	Организация				
100	F03005		A.A			строительного	9		1:100	
Пра	/ podz / pre		Cucaeli E.O.		_	произбадства				
/ (NC			Сысаев Е.О.			прособрасница	ARCHI	I Auci	nati I	
						Спроблентион М1500, Розрез 1-1 М1.200	11 .			
H N	Н компо		Great Et			Эсловние обозночения. Экспликация	Кафедра СиА			
Stock	5	Gien	ô EO			Лавнянних зданий Паспаат стройгантлана	may zopa com			

Фаанат А1

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

COI	ЛА	COB	AHO)	

Начальник отдела ОНиПКРС

подпись) Е.М. Димитриади

((_do_)) _ os 20 24 r.

Декан факультета кадастра и строительства

*Ж*р Н.В. Гринкруг

УТВЕРЖДАЮ

Проректор по научной работе

А.В. Космынин

« 20 » 05 20 24 r.

AKT

о приемке в эксплуатацию проекта «Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения»

г. Комсомольск-на-Амуре

«го» 05 20г4 г.

Комиссия в составе представителей:

со стороны заказчика

- Е.В. Журавлева руководитель СКБ «ПиИМЗиС»,
- Н.В. Гринкруг декана ФКС

со стороны исполнителя

- И.В. Погорельских руководителя проекта,
- A.A. Сухов группа 0ПСб-1,

составила акт о нижеследующем:

«Исполнитель» передает проект «Разработка стройгенплана для сварочного цеха предприятия тяжелого машиностроения», в составе:

1. Поснительная записка

2. Лист чертежа

Руководитель проекта

И.В. Погорельских

Исполнители проекта

(подпись, дата)

А.А. Сухов