Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

Работа выполнена в СКБ «Проектирование и информационное моделирование зданий и сооружений»

СОГЛАСОВАНО	УТВЕРЖДАЮ
Начальник отдела ОНиПКРС	И.о. проректора по научной ра боте
Е.М. Димитриади « 20 25 г.	А.В. Космыния «27 » _ 05 _ 2025 г.
Декан факультета кадастра и	
строительства ———————————————————————————————————	
«Влияние ветровой нагрузки н	а армирование ригеля монолитной рамы
Комплект пр	ооектной документации
Руководитель СКБ	Е.В. Журавлева
Руководитель проекта	(подпись, дата)

Карточка проекта

Название	Влияние ветровой нагрузки на армирование ригеля монолитной рамы
Тип проекта	научно-исследовательский проект
Исполнители	научно-исследовательский проект Студент Дун Гоцай – группа ЗПСм-1 Студент А.А. Ширяева – группа ЗПСм-1
Срок реализации	05 февраля-20 мая

Использованные материалы и компоненты

Исходные данные	Экспериментально-теоретические исследования армирования монолитных рам многоэтажных каркасов
-----------------	--

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ЗАДАНИЕ на разработку

Название проекта: Влияние ветровой нагрузки на армирование ригеля монолитной рамы

Назначение: проект «Влияние ветровой нагрузки на армирование ригеля монолитной рамы» предназначен для определения эффективного армирования ригелей монолитных рам при совместном действии ветровых и вертикальных нагрузок.

Область использования: проект «Влияние ветровой нагрузки на армирование ригеля монолитной рамы » будет использован при расчете на прочность каркасов многоэтажных зданий.

Функциональное описание проекта: Определить значение ветровой нагрузки для рам различной зтажности: 9-ти этажная рама и 25-ти этажная рама. Определить значения внутренних усилий для монолитных рам различной этажности при действии ветровых нагрузок. Выполнить расчет рам на действие вертикальных нагрузок. Построить огибающие эпюры моментов. Выполнить расчет прочности нормальных сечений с наибольшими значениями внутренних усилий. Определить эффективное армирование ригелей монолитных рам для различной этажности.

Техническое описание устройства: Рассмотрены огибающие эпюры моментов для 9-ти и 25- этажных рам от совместного действия ветровой и вертикальной нагрузок и определено рациональное армирование.

Требования: оценить огибающие эпюры моментов ригелей и назначить рациональное армирование.

План работ:

Наименование работ	Срок
Произвести литературный обзор материалов, связанных с проектированием монолитных каркасов многоэтажных зданий	02.2025
Произвести определение значений ветровых нагрузок для рам различной этажности.	03.2025
Выполнить расчет многоэтажных рам на действие вертикальных нагрузок.	04.2025
Провести анализ внутренних усилий в сечениях ригелей от совместного действия вертикальных и ветровых нагрузок и построить огибающие эпюры моментов	05.2025
Рекомендовать наиболее эффективную и надежную арматуру в сечениях ригелей	05.2025

Руководитель проекта

(подпись, дата)

В.А. Дзюба

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ПАСПОРТ

«Влияние ветровой нагрузки на армирование ригеля монолитной рамы »

Руководитель проекта

(подпись, дата)

В.А. Дзюба

Комсомольск-на-Амуре 2025

Содержание

1. Расчет многоэтажных монолитных рам	7
1.1 Общие положения расчета рамы на ветровую нагрузку	7
1.2 Расчет внутренних усилий в раме для 25-ти этажного эдания от ветро	вой
нагрузки	12
1.3 Определение изгибающих моментов в сечениях колонны	27
1.4 Определение изгибающих моментов в сечениях ригеля	32
1.5 Расчет ветровой нагрузки для 9 -ти этажной рамы	37
1.6 Определение изгибающих моментов в колоннах 9 -ти этажной рамы о	T
ветровой нагрузки	40
1.7 Определение изгибающих моментов в ригелях 9 -ти этажной рамы от	
ветровой нагрузки	49
1.8 Расчет внутренних усилий в раме от вертикальной нагрузки	51
1.9 Определение внутренних усилий в сечениях ригеля	56
2.Определение рационального армирования ригеля монолитной рамы	67
Заключение	74

					СКБ «ПиИМЗиС».1.ИП.01000000	Лист
					CND «1 IUVIIVI3UC». 1.VII 1.0 1 000000	
Изм.	Лист.	№ документа	Подп.	Дата.		6

1. Расчет многоэтажных монолитных рам

1.1 Общие положения расчета рамы на ветровую нагрузку

Основной тип ветровой нагрузки связан с непосредственным воздействием на здание максимальных для мест строительства ураганных ветров и должен учитываться при проектировании.

Нормативное значение основной ветровой нагрузки w следует определять, как сумму средней w_m и пульсационной w_g составляющих [3]

$$w = w_m + w_\varrho. \tag{1.1}$$

Нормативное значение средней составляющей основной ветровой нагрузки w_m в формуле (2.1) зависит от района строительства, эквивалентной высоты z_e и определяется по выражению

$$w_m = w_o k(z_e)c, (1.2)$$

где w_o – нормативное значение ветрового давления, принимаемое в зависимости от ветрового района по таблице 1.1.

Таблица 1.1 – Зависимость давления ветра от ветрового района

Ветровые районы	I_a	I	II	III	IV	V	VI	VII
w_o , к Π а	0,17	0,23	0,30	0,38	0,48	0,60	0,73	0,85

 $k(z_e)$ — коэффициент, учитывающий изменение ветрового давления для высоты z_e ;

с- аэродинамический коэффициент.

Эквивалентная высота z_e определяется следующим образом:

- 1) для башенных сооружений, мачт, труб, решетчатых конструкций и т.п. сооружений $z_e = z$;
- 1) для башенных сооружений, мачт, труб, решетчатых конструкций и т.п. сооружений $z_e = z$;
 - 2) для зданий:
 - а) при $h \le d \rightarrow z_e = h$;
 - б) при $d < h \le 2d$:

для $z \ge h - d \rightarrow z_e = h$;

для
$$0 < z < h - d \rightarrow z_e = d$$
;

		n) 112	l l	2.1		Лист
		B) IIPH $n > 2a$:		2a.	СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		7

для
$$z \ge h-d \rightarrow z_e=h;$$

для $d < z < h-d \rightarrow z_e=z;$

для
$$0 < z \le d \to z_e = d$$
.

где z — высота от поверхности земли,

d — размер здания (без учета его стилобатной части) в направлении, перпендикулярном расчетному направлению ветра (поперечный размер),

h — высота здания.

Коэффициент $k(z_e)$ для высот $z_e \le 300$ м определяется по таблице 1.2 в которой принимаются следующие типы местности:

- A открытые побережья морей, озер и водохранилищ, сельские местности, в том числе с постройками высотой менее 10 м, пустыни, степи, лесостепи, тундра;
- B городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
- C городские районы с плотной застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h — при высоте сооружения h <60 м и на расстоянии 2 км — при h> 60 м.

Таблица 1.2 - 3ависимость $k(z_e)$ от высоты и типа местности

	Высота z_e , м	Коэффи	щиент k для типов ме	естности	
		A	В	C	
	≤5	0,75	0,5	0,4	
	10	1,0	0,65	0,4	
	20	1,25	0,85	0,55	
	40	1,5	1,1	0,8	
	60	1,7	1,3	1,0	
	80	1,85	1,45	1,15	
	100	2,0	1,6	1,25	
	150	2,25	1,9	1,55	
+	200	2,45	2,1	1,8	Лист
зм. Лис	250 ст. № бокумента П		СКБ «ПиИМЗиС».1.ИІ 2,3	7.01000000 2,0	8

300	2,75	2,5	2,2

Аэродинамический коэффициент c в формуле (1.2) для вертикальных стен прямоугольных в плане зданий с наветренной стороны составляет 0,8, а с подветренной стороны - 0,5.

Нормативное значение пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_e необходимо определять по формуле

$$w_g = w_m \zeta(z_e) v. (1.3)$$

Здесь $\zeta(z_e)$ — коэффициент пульсации давления ветра, принимаемый по таблице 2.3 в зависимости от эквивалентной высоты z_e ;

v — коэффициент пространственной корреляции пульсаций давления ветра.

Таблица 1.3 – Зависимость ζ от высоты и типа местности

Высота z_e , м	Коэфф	оициент 🗆 для типов	местности
	A	В	С
≤5	0,85	1,22	1,78
10	0,76	1,06	1,78
20	0,69	0,92	1,50
40	0,62	0,80	1,26
60	0,58	0,74	1,14
80	0,56	0,70	1,06
100	0,54	0,67	1,00
150	0,51	0,62	0,90
200	0,49	0,58	0,84
250	0,47	0,56	0,80
300	0,46	0,54	0,76

Коэффициент пространственной корреляции пульсаций давления v следует определять для расчетной поверхности сооружения, с которой дав-

ı		лен	ие ветра по	ереда	ется на	несущую систему здания. Значение у принимает	Лист
ſ				1 1		СКБ «ПиИМЗµС».1.ҊП.01000000	
İ	Изм.	СЯ Лист.	ПО ТаОЛИЦС № документа	110дп.	Зависи Дата.	мости от величин $p = d$ и $\chi = h$.	9
L				l .			

Таблица 1.4 – Значение коэффициента у

р, м		Коэффициент v при χ м, равном									
	5	10	20	40	80	160	350				
0,1	0,95	0,92	0,88	0,83	0,76	0,67	0,56				
5	0,89	0,87	0,84	0,80	0,73	0,65	0,54				
10	0,85	0,84	0,81	0,77	0,71	0,64	0,53				
20	0,80	0,78	0,76	0,73	0,68	0,61	0,51				
40	0,72	0,72	0,70	0,67	0,63	0,57	0,48				
80	0,63	0,63	0,61	0,59	0,56	0,51	0,44				
160	0,53	0,53	0,52	0,50	0,47	0,44	0,38				

Формула (1.3) применима при выполнении условия

$$f_l > f_{lim}, \tag{1.4}$$

где f_I – первая частота собственных колебаний,

 f_{lim} – предельное значение частоты собственных колебаний.

Согласно предельное значение частоты собственных колебаний определяется по выражению

$$f_{lim} = \frac{\sqrt{\mathsf{w}_0 \mathsf{k}(\mathsf{z}_{\mathsf{3K}}) \, \mathsf{\gamma}_{\mathsf{f}}}}{\mathsf{940T}_{\mathsf{g, lim}}}.$$
 (1.5)

Здесь w_o (Па) — нормативное значение ветрового давления (определяется по таблице 1.1);

 $k(z_{9\kappa})$ — коэффициент учитывающий изменение давления ветра для высоты $z_{9\kappa}$, равной 0.8h, где h — высота здания;

 γ_{f} – коэффициент надежности по нагрузке, равный 1,4;

 $T_{\it g, lim}$ – предельный период, принимаемый в зависимости от суммарно-

		го.	тогарифми	ческо	ого декр	ремента колеоании о.	Лист
						СКБ «ПиИМЗиС».1.ИП.01000000	
Из	ВМ.	Лист.	№ документа	Подп.	Дата.		10

Для железобетонных и каменных сооружений данные параметры согласно составляют $\delta=0,3$ и $T_{g,\ lim}=0,023$.

Первая частота собственных колебаний равна

$$f_I = \frac{1}{\mathsf{T}_1},\tag{1.6}$$

где T_I — период собственных колебаний первого тона, значение которого может быть вычислено согласно по приближенной эмпирической формуле

$$T_1 = 0.021h,$$
 (1.7)

где h – высота здания, м.

Если первая собственная частота меньше предельного значения частоты собственных колебаний, а вторая собственная частота f_2 больше этого значения, т.е. выполняется условие $f_1 < f_{lim} < f_2$, то нормативное значение пульсационной составляющей основной ветровой нагрузки w_g необходимо вычислять по формуле

$$W_g = W_m \, \xi \, \zeta \, (z_e) v, \tag{1.8}$$

где ξ - коэффициент динамичности, определяемый по рисунку 2.1 при логарифмическом декременте $\delta=0,3$ (для железобетонных и каменных сооружений) в зависимости от безразмерного периода $T_{g,1}$, вычисляемого для первой собственной частоты f_I

$$T_{g, 1} = \frac{\sqrt{w_0 k(z_{9K}) \gamma_f}}{940f_1}.$$
 (1.9)

					CVE "FUMMOUC" 4 MF 0400000	Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		11

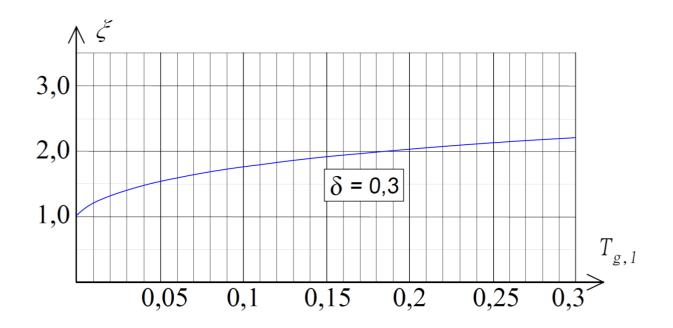
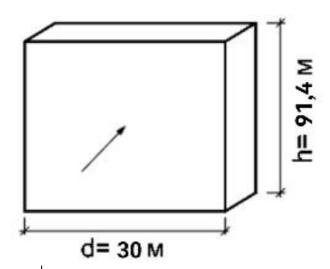



Рисунок 1.1 – Коэффициент динамичности

Данный алгоритм позволяет выполнять расчет статической и динамической составляющей ветровой нагрузки.

1.2 Расчет внутренних усилий в раме для 25-ти этажного эдания от ветровой нагрузки

Рассмотрим 25-этажное каркасное здание с высотой этажа 3.6 метра. Расстояние от планировочной отметки до уровня пола первого этажа равно 0,8 метра, а высота парапета 0,6 метра. Тогда высота несущей системы h = $H = 25 \cdot 3.6 + 0.8 + 0.6 = 91.4$ м. Определим нормативное значение средней составляющей основной ветровой нагрузки для здания : d=30м . Район строительства – г. Комсомольск-на-Амуре. Тип местности - В (городские территории). Ветровой район – III (0.38 кПа).

Изм. Лист. № документа Подп. Дата. Ветровой нагрузки.	-		Рисуно	к 1.2	- Схем	аздания д ожбирымымено». Фрадней Ососов ляющей	Лист
	Изп	1. Лист.					12

Оценим влияние длины многоэтажного здания на интенсивность ветровой нагрузки. Эквивалентная высота при длине здания:

$$d=30$$
 м, $h=91,4$ м (при $h \ge 2d$)

для
$$z \ge h-d \rightarrow z_e=h=91,4$$
;

для
$$d < z < h - d \rightarrow z_e = z$$
, $(30 < z < 61, 4 \rightarrow z_e = z)$;

для
$$0 < z \le d \to z_e = d = 30$$

График зависимости эквивалентной высоты z_e от высоты здания h для длины фасада представлены на рис 1.2.

Коэффициент $k(z_e)$ определяем по методу интерполяции в соответствии с табл. 1.2.

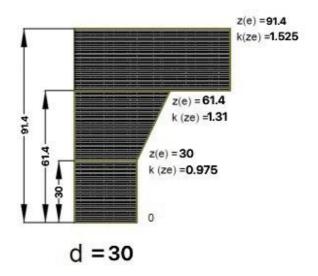


Рисунок 1.3 - график зависимости эквивалентной высоты z_e от высоты здания h

Определим нормативное значение средней составляющей ветровой нагрузки w_m для всех типов зданий по формуле:

$$w_m = w_0 k(z_e) c,$$

где $w_0 = 0.38 \ \mbox{к}\mbox{Па}$ (табл. 1, для III ветрового района);

с - суммарный аэродинамический коэффициент =1,3;

для h=30м, w_{m1} =0,38· 0,975 ·1,3=0,482 кH/м²

для h=61,4м, $w_{m1}=0,38\cdot 1,31\cdot 1,3=0,647$ к H/M^2

для h=91.4 м, $w_{m2}=0.38 \cdot 1.525 \cdot 1.3=0.753$ к H/M^2

							Лист
			Расчет 1	норм	ативноі	о значения приприменный справодный основ	_
ν	1зм.	^{Лин} ой	Медокумента Ветровой	Пада р	VЗКИ ^а w	, на эквивалентной высоте <i>z</i> определяем в следу	13

ющем порядке. Вычисляем первую частоту собственных колебаний по формулам (1.6) и (1.7).

$$f_1 = \frac{1}{T_1} = \frac{1}{1,92} = 0,521 \frac{1}{c},$$

где
$$T_1 = 0.021h = 0.021 \cdot \square \square \square \square = 1.92c$$
.

Затем определяем предельное значение частоты собственных колебаний по выражению (1.5) при $z_{9K} = 0.8h = 0.8 \cdot 2000 = 73,12$ и $k(z_{9K}) = 1,398$

$$f_{lim} = \frac{\sqrt{w_0 k(z_{9K}) \gamma_f}}{940 T_{g, lim}} = \frac{\sqrt{380*1,398*1,4}}{940*0.023} = 1,26\frac{1}{c}.$$

Так как условие (1.4) $f_I > f_{lim}$ не выполняется, то нормативное значение пульсационной составляющей основной ветровой нагрузки w_g необходимо вычислять по формуле (1.3) $w_g = w_m \xi \zeta (z_e)v$.. Здесь ξ - коэффициент динамичности, определяемый по рисунку 1.1 при логарифмическом декременте $\delta = 0,3$ в зависимости от безразмерного периода $T_{g,1}$, вычисляемого для первой собственной частоты f_I по формуле (1.9)

$$T_{g,\,1} = \frac{\sqrt{w_o k(z_{_{9K}}) \, \gamma_f}}{940 f_1} = \frac{\sqrt{380^* 1,398^* \, 1,4}}{940^* 0,521} = 0,0557.$$

Тогда $\xi = 1.5$.

Определим значения коэффициента пульсации давления ветра ζ (z_e) по таблице 2.3 в зависимости от эквивалентной высоты z_e :

:
$$z_e = 30 - \zeta(z_e) = 0.86$$
; $z_e = 61.4 - \zeta(z_e) = 0.74$; $z_e = 91.4 - \zeta(z_e) = 0.685$.

Коэффициент пространственной корреляции пульсаций давления v вычислим для расчетной поверхности сооружения, с которой давление ветра передается на несущую систему здания. Значение v принимается в зависимости от величин p=d и $\chi=h=91,4$ м.

при
$$p = d=30$$
 и $\chi = h=$ **91**,4м имеем $v=0,655$.

Таким образом нормативное значение пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_e (рис. 1.4) будет равно:

для h=30м,
$$w_g$$
 = 0,482 · 1,5 · 0,86 · 0,655 = 0,407 кH/м² для h=61,4 м, w_g = 0,647 · 1,5 · 0,74 · 0,655 = 0,47 кH/м² для h=91,4 м, w_g = 0,753 · 1,5 · 0,685 · 0,655 = 0,507 кH/м²

Определим суммарные значения средней и пульсационной составляющих:

		для h=30) м, ν	$v = w_m +$	$-w_g = 0.482 + 0.407 = 0.889 \text{ kH/m}^2$	Лист
					СКБ «ПиИМЗиС» 1 ИП 01000000	
Изм.	Лист.	№ бокумента	rfð∂M.	$\mathcal{W}_{Jama} = W_{N}$	$w_g = 0.647 + 0.47 = 1.117 \text{ kH/m}^2$	14

для h=91,4 м,
$$w = w_m + w_g = 0.753 + 0.507 = 1.26 \text{ кH/м}^2$$
.

Определим расчетную ветровую нагрузку. Для этого основную нормативную ветровую нагрузку следует умножить на коэффициент надежности по нагрузке γ_f =1,4 и коэффициент надежности по ответственности зданий γ_n = 1(нормальный уровень ответственности). При этом расчет элементов несущей системы выполняется по соответствующей грузовой площади. Так для поперечной рамы рамного каркаса ширина грузовой площади равна шагу рам B=6 м. Тогда значения расчетной нагрузки для различных вариантов зданий будут равны

для h=30 м,
$$w = 0.889 \cdot 1.4 \cdot 1.6 = 7.468 \text{ кH/м}$$
;
для h=61,4 м, $w = 1.117 \cdot 1.4 \cdot 1.6 = 9.383 \text{кH/м}$;
для h=91,4 м, $w = 1.26 \cdot 1.4 \cdot 1.6 = 10.584 \text{кH/м}^2$;

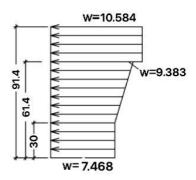


Рисунок 1.4 - Эпюры расчетной основной ветровой нагрузки

Вычислим эквивалентную равномерно распределенную ветровую нагрузку $q_{\text{экв}}$ для полосы фасада здания шириной 1 м от суммарного действия средней и пульсационной составляющих. Предварительно определим изгибающие моменты для каждого варианта зданий.

$$\Sigma$$
M1 = 7,468 · 30 · (30/2) + (7,468 + 9,383)/2 · 31,4 · ((31,4/2) + 30) +10,584 · 30 · ((30/2) +61,4) =39709,552 кH·м;

$$q_{_{^{9KB}1}}\!=(39709,\!552\!\cdot2)/91,\!4^2\!=9,\!507~\kappa H/{\scriptscriptstyle M}^2\!\cdot\!$$

Расчет на горизонтальные (ветровые) нагрузки выполняем приближенным методом. Распределенную горизонтальную нагрузку заменяем со-

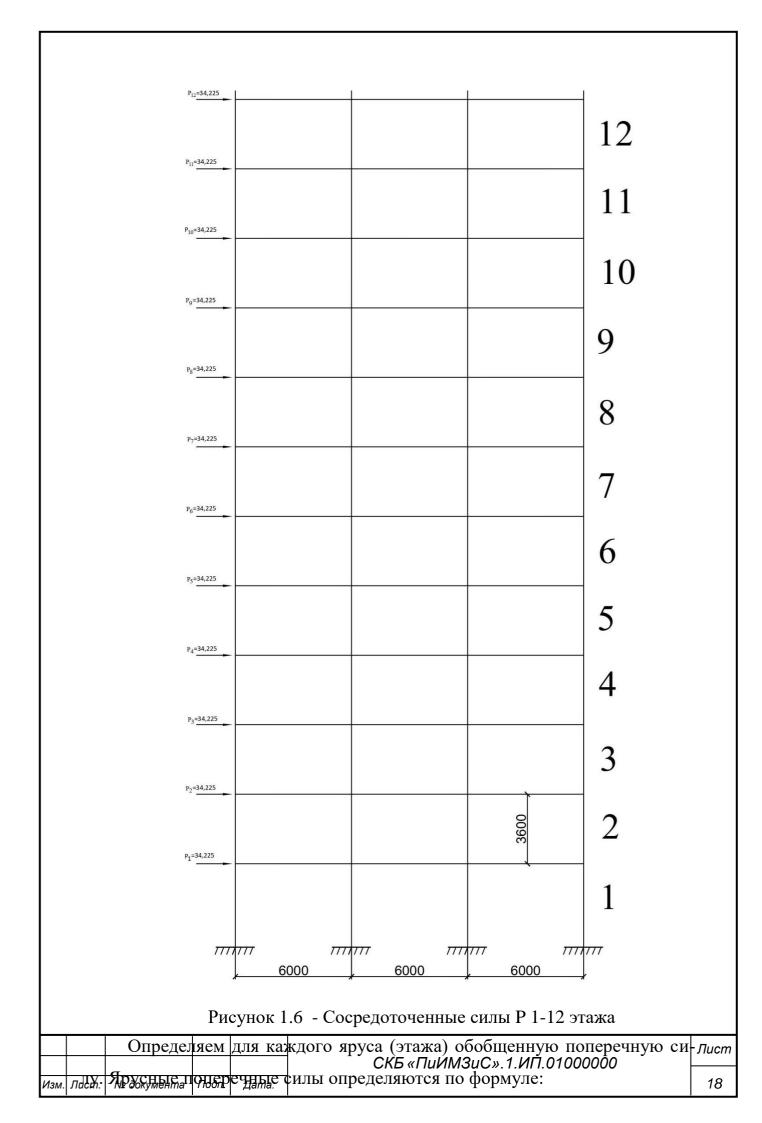
	средоточенными силами, приложенные к узлам рамы (рис.1.10,1.11).									
					0//5 /5 /4//0 0 /4 /4/5 04/000000	Лист				
					СКБ «ПиИМЗиС».1.ИП.01000000					
Изл	л. Лист.	№ документа	Подп.	Дата.		15				

Рассчитывается сосредоточенная сила с первого по двадцать четвертый этаж определяется по формуле:

$$P_{1-24} = w_1 * h_{9T}; (1.10)$$

Для верхнего узла узловая нагрузка (т.к. плечо равно половине высоты этажа), будет равна:

$$P_{25} = w_1 * \frac{h_{\text{9T}}}{2}; \tag{1.11}$$


Тогда:

$$P_{1-24} = 9,507 * 3,6 = 34,225 kN;$$

$$P_{25} = 9,507 * \frac{3,6}{2} = 17,113 \text{ kN};$$

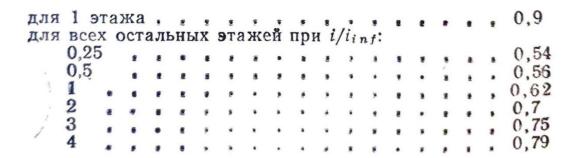
					СКБ «ПиИМЗиС».1.ИП.01000000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	CNB «Truvilvisuo». T.vii 1.0 1000000	16

$$\begin{split} Q_{25} &= \mathsf{P}_{25} = 17{,}113\,\mathrm{kN}; \\ Q_{24} &= \mathsf{P}_{25} + \mathsf{P}_{24} = 51{,}338\,\mathrm{kN}; \\ Q_{23} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} = 85{,}563\,\mathrm{kN}; \\ Q_{22} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} = 119{,}788\,\mathrm{kN}; \\ Q_{21} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} + \mathsf{P}_{21} = 154{,}013\,\mathrm{kN}; \\ Q_{20} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} + \mathsf{P}_{21} + \mathsf{P}_{20} = 188{,}238\,\mathrm{kN}; \\ Q_{19} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} + \mathsf{P}_{21} + \mathsf{P}_{20} + \mathsf{P}_{19} = 222{,}463\,\mathrm{kN}; \\ Q_{18} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} + \mathsf{P}_{21} + \mathsf{P}_{20} + \mathsf{P}_{19} + \mathsf{P}_{18} = 256{,}688\,\mathrm{kN}; \\ Q_{17} &= \mathsf{P}_{25} + \mathsf{P}_{24} + \mathsf{P}_{23} + \mathsf{P}_{22} + \mathsf{P}_{21} + \mathsf{P}_{20} + \mathsf{P}_{19} + \mathsf{P}_{18} + \mathsf{P}_{17} = 290{,}913\,\mathrm{kH}; \end{split}$$

 $Q_1 = P_{25} + P_{24} + P_{23} + P_{22} + P_{21} + \dots + P_3 + P_2 + P_1 = 838,513 \text{ kH};$

Они распределяются между отдельными стойками пропорционально жесткости.

Крайние стойки рамы, имеющие меньшую степень защемления в узле, чем средние стойки (поскольку к крайнему узлу ригель примыкает только с одной стороны), воспринимают относительно меньшую долю ярусной поперечной силы, что учитывается в расчете условным уменьшением жесткости крайних стоек. Вычислим жесткости колонны и ригеля и их отношение


$$i_{6} = \frac{E\Gamma_{6}}{e_{6}} = \frac{B_{6}h_{6}^{3}}{12\times6} = \frac{0,25\times0,6^{3}}{72} = 0,00075;$$

$$i_{c} = \frac{E\Gamma_{c}}{e_{c}} = \frac{B_{c}h_{c}^{3}}{12\times3,6} = \frac{0,5\times0,5^{3}}{43,2} = 0,00144;$$

$$\frac{i_{6}}{i_{c}} = \frac{0,00075}{0,00144} = 0,52.$$

Коэффициент β определим по таблице 1 [].

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		19

Для крайних колонн коэффициент β =0,52<1 . Тогда суммарная жесткость яруса 0,52+1+1+0,52=3,04.

Тогда для крайних колонн 1 и 4:

$$Q_{1,i} = \frac{0,52}{3,04} * Q_i;$$

$$Q_{4,i} = \frac{0.52}{3.04} * Q_i;$$

Для средних колонн 2-3:

$$Q_{2,i} = \frac{1}{3.04} * Q_i;$$

$$Q_{3,i} = \frac{1}{3,04} * Q_i;$$

В таблице № 3 отражены усилия от нагрузки.

$$Q_{25} = 17,113 \text{ KN};$$

$$Q_{1,25} = \frac{0,52}{3,04} * Q_{25} = 2,927; Q_{2,25} = \frac{1}{3,04} * Q_{25} = 5,63;$$

$$Q_{3,25} = \frac{1}{3,04} * Q_{25} = 5,63; Q_{4,25} = \frac{0,52}{3,04} * Q_{25} = 2,927;$$

$$Q_{24} = 51,338 \text{ KN};$$

$$Q_{1,24} = \frac{0,52}{3,04} * Q_{24} = 8,782; Q_{2,24} = \frac{1}{3,04} * Q_{24} = 16,888;$$

$$Q_{3,24} = \frac{1}{3.04} * Q_{24} = 16,888; Q_{4,24} = \frac{0,52}{3.04} * Q_{24} = 8,782;$$

	Q_{23}	= 85,563	кN;			Лист	I
					СКБ «ПиИМЗиС».1.ИП.01000000		┨
Изм	Лист.	№ документа	Подп.	Дата.		20	

$$Q_{1,23} = \frac{0,52}{3,04} * Q_{23} = 14,636; Q_{2,23} = \frac{1}{3,04} * Q_{23} = 28,146;$$

$$Q_{3,23} = \frac{1}{3.04} * Q_{23} = 28,146; Q_{4,23} = \frac{0,52}{3.04} * Q_{23} = 14,636;$$

 $Q_{22} = 119,788 \text{ KN};$

$$Q_{1,22} = \frac{0,52}{3,04} * Q_{22} = 20,49; Q_{2,22} = \frac{1}{3,04} * Q_{22} = 39,404;$$

$$Q_{3,22} = \frac{1}{3.04} * Q_{22} = 39,404; Q_{4,22} = \frac{0,52}{3.04} * Q_{22} = 20,49;$$

 $Q_{21} = 154,013 \text{ KN};$

$$Q_{1,21} = \frac{0,52}{3,04} * Q_{21} = 26,344; Q_{2,21} = \frac{1}{3,04} * Q_{21} = 50,662;$$

$$Q_{3,21} = \frac{1}{3.04} * Q_{21} = 50,662; Q_{4,21} = \frac{0,52}{3.04} * Q_{21} = 26,344;$$

 $Q_{20} = 188,238 \text{ KN};$

$$Q_{1,20} = \frac{0,52}{3,04} * Q_{20} = 32,199; Q_{2,20} = \frac{1}{3,04} * Q_{20} = 61,92;$$

$$Q_{3,20} = \frac{1}{3,04} * Q_{20} = 61,92; Q_{4,20} = \frac{0,52}{3,04} * Q_{20} = 32,199;$$

 $Q_{19} = 222,463 \text{ KN};$

$$Q_{1,19} = \frac{0,52}{3,04} * Q_{19} = 38,053; Q_{2,19} = \frac{1}{3,04} * Q_{19} = 73,179;$$

$$Q_{3,19} = \frac{1}{3,04} * Q_{19} = 73,179; Q_{4,19} = \frac{0,52}{3,04} * Q_{19} = 38,053;$$

 $Q_{18} = 256,688 \text{ KN};$

$$Q_{1,18} = \frac{0,52}{3.04} * Q_{18} = 43,907; Q_{2,18} = \frac{1}{3.04} * Q_{18} = 84,437;$$

			1	0,52	Лист
		$Q_{3,18}$	$Q_{1} = \frac{1}{2 \cdot 0.4} * Q_{2}$	₁₈ = 84,43 °C,KB ₄ ,GJ,U#A1 A,SUC *.Q.Y.JT=01AQQ 9QQTQ	
Изм.	Лист.	№ документа	Подп. Дата.	3,04	21

$$Q_{17} = 290,913 \text{ kH};$$

$$Q_{1,17} = \frac{0,52}{3,04} * Q_{17} = 49,761; Q_{2,17} = \frac{1}{3,04} * Q_{17} = 95,695;$$

$$Q_{3,17} = \frac{1}{3.04} * Q_{17} = 95,695; Q_{4,17} = \frac{0,52}{3.04} * Q_{17} = 49,761;$$

$$Q_{16} = 325,138 \text{ KN};$$

$$Q_{1,16} = \frac{0,52}{3,04} * Q_{16} = 55,616; Q_{2,16} = \frac{1}{3,04} * Q_{16} = 106,953;$$

$$Q_{3,16} = \frac{1}{3.04} * Q_{16} = 106,953; Q_{4,16} = \frac{0,52}{3.04} * Q_{16} = 55,616;$$

$$Q_{15} = 359,363 \text{ KN};$$

$$Q_{1,24} = \frac{0,52}{3,04} * Q_{15} = 61,47; Q_{2,15} = \frac{1}{3,04} * Q_{15} = 118,212;$$

$$Q_{3,15} = \frac{1}{3.04} * Q_{15} = 118,212; Q_{4,15} = \frac{0,52}{3.04} * Q_{15} = 61,47;$$

$$Q_{14} = 393,588 \text{ kN};$$

$$Q_{1,14} = \frac{0,52}{3.04} * Q_{14} = 67,324; Q_{2,14} = \frac{1}{3.04} * Q_{14} = 129,47;$$

$$Q_{3,14} = \frac{1}{3.04} * Q_{14} = 129,47; Q_{4,14} = \frac{0,52}{3.04} * Q_{14} = 67,324;$$

 $Q_{13} = 427,813 \text{ KN};$

$$Q_{1,13} = \frac{0.52}{3.04} * Q_{13} = 73,179; Q_{2,13} = \frac{1}{3.04} * Q_{13} = 140,728;$$

$$Q_{3,13} = \frac{1}{3,04} * Q_{13} = 140,728; Q_{4,13} = \frac{0,52}{3,04} * Q_{13} = 73,179;$$

 $Q_{12} = 462,038 \text{ KN};$

$$Q_{1,12} = \frac{0,52}{3.04} * Q_{12} = 79,033; Q_{2,12} = \frac{1}{3.04} * Q_{12} = 151,986;$$

			1	0,52	Лист
		$Q_{3,12}$	$=\frac{1}{2 \cdot 0.4} * Q_1$	$_{2}=151,98$ ይĶ ይ ፋቪኒሀላዝላ ፟3uĈ »*1Q4ቪ. 0 1 000008 ;	
Изм.	Лист.	№ документа	Подп. Дата.	3,04	22

$$Q_{11} = 496,263 \text{ KN};$$

$$Q_{1,11} = \frac{0,52}{3,04} * Q_{11} = 84,887; Q_{2,11} = \frac{1}{3,04} * Q_{11} = 163,244;$$

$$Q_{3,11} = \frac{1}{3.04} * Q_{11} = 163,244; Q_{4,11} = \frac{0,52}{3.04} * Q_{11} = 84,887;$$

 $Q_{10} = 530,488 \text{ kN};$

$$Q_{1,10} = \frac{0,52}{3.04} * Q_{10} = 90,741; Q_{2,10} = \frac{1}{3.04} * Q_{10} = 174,503;$$

$$Q_{3,10} = \frac{1}{3.04} * Q_{10} = 174,503; Q_{4,10} = \frac{0,52}{3.04} * Q_{10} = 90,741;$$

 $Q_9 = 564,713 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3.04} * Q_9 = 96,596; Q_{2,9} = \frac{1}{3.04} * Q_9 = 185,761;$$

$$Q_{3,9} = \frac{1}{3,04} * Q_9 = 185,761; Q_{4,9} = \frac{0,52}{3,04} * Q_9 = 96,596;$$

 $Q_8 = 598,938 \text{ kH};$

$$Q_{1,8} = \frac{0,52}{3,04} * Q_8 = 102,45; Q_{2,8} = \frac{1}{3,04} * Q_8 = 197,019;$$

$$Q_{3,8} = \frac{1}{3,04} * Q_8 = 197,019; Q_{4,8} = \frac{0,52}{3,04} * Q_8 = 102,45;$$

 $Q_7 = 633,163 \text{ KN};$

$$Q_{1,7} = \frac{0,52}{3.04} * Q_7 = 108,304; Q_{2,7} = \frac{1}{3.04} * Q_7 = 208,277;$$

$$Q_{3,7} = \frac{1}{3,04} * Q_7 = 208,277; Q_{4,7} = \frac{0,52}{3,04} * Q_7 = 108,304;$$

 $Q_6 = 667,388 \text{ kN};$

$$Q_{1,6} = \frac{0,52}{3.04} * Q_6 = 114,158; Q_{2,6} = \frac{1}{3.04} * Q_6 = 219,536;$$

			1	0,52	Лист
		$Q_{3,6}$	$=\frac{1}{2 \Omega_A}*Q_e$	= 219,53 6;KB _{4;G} T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Изм.	Лист.	№ документа	Подп. Дата.	5,04	23

$$Q_5 = 701,613 \text{ KN};$$

$$Q_{1,5} = \frac{0,52}{3,04} * Q_5 = 120,013; Q_{2,5} = \frac{1}{3,04} * Q_5 = 230,794;$$

$$Q_{3,5} = \frac{1}{3,04} * Q_5 = 230,794; Q_{4,5} = \frac{0,52}{3,04} * Q_5 = 120,013;$$

 $Q_4 = 735,838 \text{ кN};$

$$Q_{1,4} = \frac{0,52}{3.04} * Q_4 = 125,867; Q_{2,4} = \frac{1}{3.04} * Q_4 = 242,052;$$

$$Q_{3,4} = \frac{1}{3,04} * Q_4 = 242,052; Q_{4,4} = \frac{0,52}{3,04} * Q_4 = 125,867;$$

 $Q_3 = 770,063 \text{ KN};$

$$Q_{1,3} = \frac{0,52}{3,04} * Q_3 = 131,721; Q_{2,3} = \frac{1}{3,04} * Q_3 = 253,31;$$

$$Q_{3,3} = \frac{1}{3.04} * Q_3 = 253,31; Q_{4,3} = \frac{0,52}{3.04} * Q_3 = 131,721;$$

 $Q_2 = 804,288 \text{ KN};$

$$Q_{1,2} = \frac{0,52}{3,04} * Q_2 = 137,576; Q_{2,2} = \frac{1}{3,04} * Q_2 = 264,568;$$

$$Q_{3,2} = \frac{1}{3,04} * Q_2 = 264,568; Q_{4,2} = \frac{0,52}{3,04} * Q_2 = 137,576;$$

 $Q_1 = 838,513 \text{ kH};$

$$Q_{1,1} = \frac{0.52}{3.04} * Q_8 = 143,43; Q_{2,1} = \frac{1}{3.04} * Q_8 = 275,826;$$

$$Q_{3,1} = \frac{1}{3.04} * Q_8 = 275,826; Q_{4,1} = \frac{0,52}{3.04} * Q_8 = 143,43;$$

Изм.	Лист.	№ документа	Подп.	Дата.

Q ₂₅ =17.113	Q _{1,25} =2.927	Q _{2,25} =5,63	Q _{3,25} =5.63	Q _{4,9} =2.927	25
Q ₂₄ =51.338	Q _{1,24} =8.782	Q _{2,24} =16.888	Q _{3,24} =16.888	Q _{4,25} =8.782	24
Q ₂₃ =85.563	O _{1,23} =14.636	Q _{2,23} =28.146	Q _{3,23} =28.146	Q _{4,23} =14.636	23
Q ₂₂ =119.788	Q _{1,22} =20.49	Q _{2,22} =39.404	Q _{3,22} =39.404	Q _{4,22} =20.49	22
Q ₂₁ =154.013	Q _{l,21} =26.344	Q _{2,21} =50.662	Q _{3,21} =50.662	Q _{4,21} =26.344	21
Q ₂₀ =188.238	Q ₍₂₀ =32.199	Q _{2,20} =61.92	Q _{3 20} =61.92	Q _{4,20} =32.199	20
Q ₁₉ =222.463	Q _{[19} =38.053	Q _{2,19} =73.179	Q _{3,19} =73.179	Q _{4,19} =38.053	19
Q ₁₈ =256.688	Q _{1,18} =43.907	Q _{2,18} =84.437	Q _{3,18} =84.437	Q _{4,18} =43.907	18
Q ₁₇ =290.913	Q _{1,17} =49.761	Q _{2,17} =95.695	Q _{3,17} =95.695	Q _{4,17} =49.761	17
Q ₁₆ =325.138	Q _{1,16} =55.616	Q _{2,16} =106.953	Q _{3,25} =106.953	Q _{4,9} =55.616	16
Q ₁₅ =359.363	Q _{1,15} =61.47	Q _{2,15} =118.212	Q _{3,15} =118.212	Q _{4,15} =61.47	15
Q ₁₄ =393.588	Q ₁₁₄ =67.324	Q _{2,14} =129.47	Q _{3,14} =129.47	Q _{4,14} =67.324	14
Q ₁₃ =427.813	Q _{1,13} =73.179	Q _{2,18} =140.728	Q _{3,13} =140.728	Q _{4,13} =73.179	13
D	ушак 1.7 Паг	10001111112 01177	и пла D 12 25 го		

Рисунок 1.7 - Поперечные силы для Р 13-25 этажа

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		25

Q ₁₂ =462.038	Q _{1,12} =79.033	Q _{2,12} =151.986	Q _{3,12} =151.986	Q _{4,12} =79.033	12	
Q ₁₁ =496.26 <u>3</u>	Q ₍₁₁ =84.887	Q _{2,11} =163.244	Q _{3,11} =163.244	Q _{4,11} =84.887	11	
Q ₁₀ =530.4 <u>8</u> 8	Q _{1,10} =90.741	Q _{2,10} =174.503	Q _{3,10} =174.503	Q _{4,10} =90.741	10	
Q ₀ =564.713	Q _{1,9} =96.596	Q _{2,9} =185.761	Q _{3,9} =185.761	Q _{4,9} =96.596	9	
Q ₈ =598.938	Q _{1,8} =102.45	Q _{2,8} =197.019	Q _{3,g} =197.019	Q _{4,8} =102.45	8	
Q ₇ =633.163	Q _{1,7} =108.304	Q _{2,7} =208.277	Q _{3,7} =208.277	Q _{4,7} =108.304	7	
Q ₆ =667.388	Q _{1,6} =114.158	Q _{2,6} =219.536	Q _{3,6} =219.536	Q _{4,6} =114.158	6	
Q ₅ =701.613	Q _{1,5} =120.013	Q _{2,5} =230.794	Q _{3,5} =230.794	Q _{4,5} =120.013	5	
Q ₄ =735.838	O _{\(\lambda\) 4=125.867}	Q _{2,4} =242.052	Q _{3,4} =242.052	Q _{4,4} =125.867	4	
Q ₃ =770.063	Q _{1,3} =131.721	Q _{2,3} =253.31	Q _{3,3} =253.31	Q _{4,3} =131.721	3	
Q ₂ =804.288	Q _{1,2} =137.576	Q _{2,2} =264.568	Q _{3,2} =264.568	Q _{4,2} =137.576	2	
Q ₁ =838.513	Q _{1,i} =143.43	Q _{2,1} =275.826	Q _{3,1} =275.826	Q _{4,1} =143.43	1	
777	6000	6000	6000	7777		
F	Рисунок 1.8 - П	оперечные сил	ны P для 1-12 э	гажа		
		СКБ «Пи	иИМ3иС».1.ИП.(01000000		Лист

Подп.

Дата.

№ документа

1.3 Определение изгибающих моментов в сечениях колонны

Моменты для 1 и 6 колонны определяются по следующей формуле:

$$M_{i,i} = \frac{h_{3T}}{2} * Q_{i,i};$$
 (1.12)

Для первого этажа формула для изгибающего момента будет иметь вид:

$$M_{Bi,i} = \frac{1}{3} * h_{T} * Q_{i,i};$$
 (1.13)

$$M_{\text{B}i,i} = \frac{2}{3} * h_{\text{3T}} * Q_{i,i};$$
 (1.14)

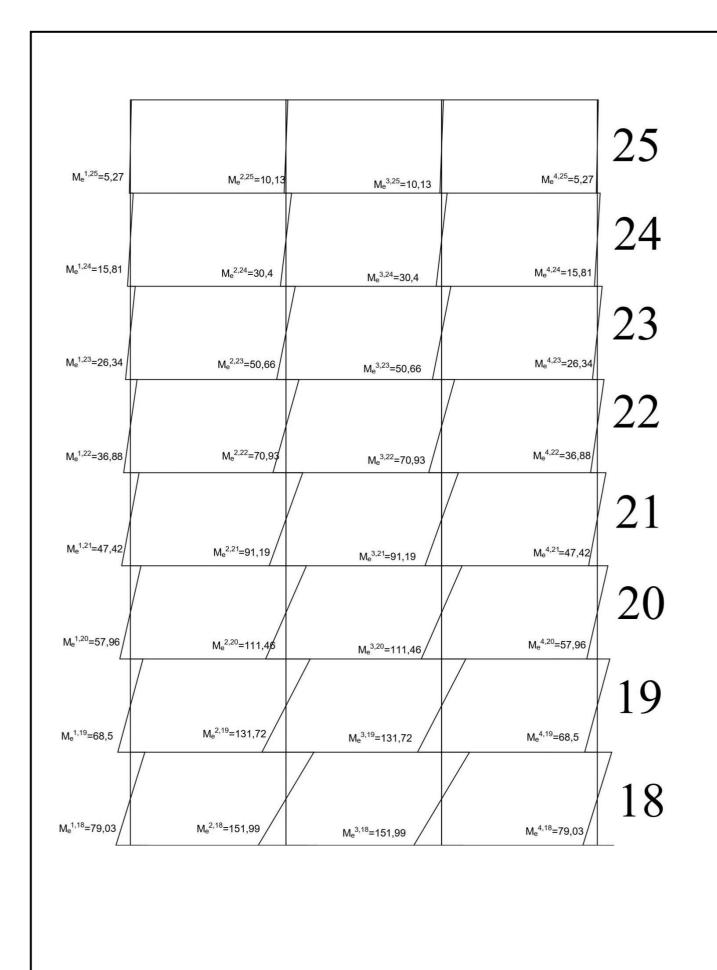
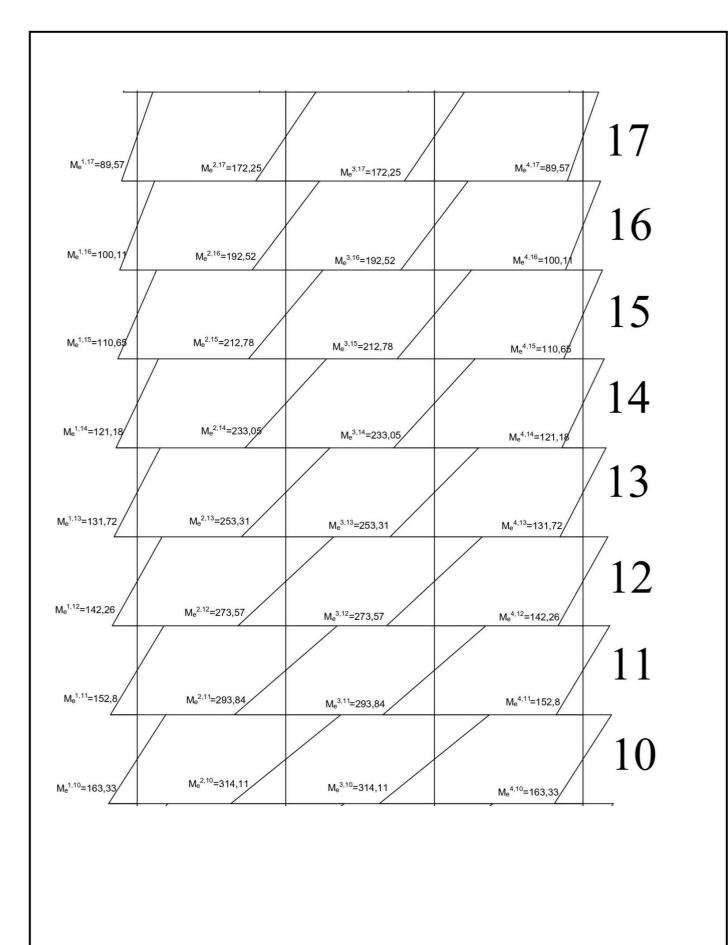

Тогда результат вычисления моментов по формуле (1.12), отображены в таблице 1.5.

Таблица 1.5 – Изгибающие моменты в колонах


5,27	$\mathbf{M}_{\mathrm{e}}^{2,25}$	10,13	$M_e^{3,23}$	10,13	$M_e^{4,23}$	5,27	
15,81	$\mathbf{M}_{\mathrm{e}}^{2,24}$	30,4	$M_e^{3,24}$	30,4	M _e ^{4,24}	15,81	
26,34	$M_{\rm e}^{2,23}$	50,66	$\mathbf{M_e}^{3,23}$	50,66	M _e ^{4,23}	26,34	
36,88	$M_e^{2,22}$	70,93	$\mathbf{M_e}^{3,22}$	70,93	$\mathbf{M}_{\mathrm{e}}^{4,22}$	36,88	
47,42	$\mathbf{M_e}^{2,21}$	91,19	$M_e^{3,21}$	91,19	M _e ^{4,21}	47,42	
57,96	$\mathbf{M_e}^{2,20}$	111,46	$M_e^{3,20}$	111,46	$\mathbf{M}_{\mathrm{e}}^{4,20}$	57,96	
68,5	$M_{\rm e}^{2,19}$	131,72	$M_e^{3,19}$	131,72	$M_e^{4,19}$	68,5	
79,03	${ m M_e}^{2,18}$	151,99	$M_e^{3,18}$	151,99	$M_{e}^{4,18}$	79,03	
89,57	$\mathbf{M_e}^{2,17}$	172,25	$M_e^{3,17}$	172,25	M _e ^{4,17}	89,57	
100,11	$M_{\rm e}^{2,16}$	192,52	$M_e^{3,16}$	192,52	M _e ^{4,16}	100,11	
110,65	$\mathbf{M_e}^{2,15}$	212,78	$M_e^{3,15}$	212,78	$\mathbf{M}_{\mathrm{e}}^{4,15}$	110,65	
121,18	$\mathbf{M_e}^{2,14}$	233,05	$M_e^{3,14}$	233,05	$\mathbf{M}_{\mathrm{e}}^{4,14}$	121,18	
131,72	$\mathbf{M_e}^{2,13}$	253,31	$M_e^{3,13}$	253,31	M _e ^{4,13}	131,72	
142,26	$M_e^{2,12}$	273,57	M _e ^{3,12}	273,57	M _e ^{4,12}	142,26	
152,8	$\mathbf{M_e}^{2,11}$	293,84	$\mathbf{M}_{\mathrm{e}}^{3,11}$	293,84	M _e ^{4,11}	152,8	
163,33	$M_e^{2,10}$	314,11	M _e ^{3,10}	314,11	M _e ^{4,10}	163,33	Лист
173,87 мента Подп	М _e ^{2,9} . Дата.	334,37	H CK5%H lu Me	VIM3UC». 334,37	Т.ИН.<u>О</u>ЛОС Ме	173,87	27
	15,81 26,34 36,88 47,42 57,96 68,5 79,03 89,57 100,11 110,65 121,18 131,72 142,26 152,8 163,33 173,87	15,81 $M_e^{2,24}$ 26,34 $M_e^{2,23}$ 36,88 $M_e^{2,22}$ 47,42 $M_e^{2,21}$ 57,96 $M_e^{2,20}$ 68,5 $M_e^{2,19}$ 79,03 $M_e^{2,18}$ 89,57 $M_e^{2,18}$ 100,11 $M_e^{2,16}$ 110,65 $M_e^{2,16}$ 121,18 $M_e^{2,13}$ 142,26 $M_e^{2,12}$ 152,8 $M_e^{2,11}$ 163,33 $M_e^{2,10}$	15,81 $M_e^{2,24}$ 30,4 26,34 $M_e^{2,23}$ 50,66 36,88 $M_e^{2,22}$ 70,93 47,42 $M_e^{2,21}$ 91,19 57,96 $M_e^{2,20}$ 111,46 68,5 $M_e^{2,19}$ 131,72 79,03 $M_e^{2,18}$ 151,99 89,57 $M_e^{2,18}$ 172,25 100,11 $M_e^{2,16}$ 192,52 110,65 $M_e^{2,16}$ 212,78 121,18 $M_e^{2,15}$ 212,78 131,72 $M_e^{2,13}$ 253,31 142,26 $M_e^{2,12}$ 273,57 152,8 $M_e^{2,11}$ 293,84 163,33 $M_e^{2,16}$ 314,11	15,81	15,81 $M_e^{2,24}$ 30,4 $M_e^{3,24}$ 30,4 26,34 $M_e^{2,23}$ 50,66 $M_e^{3,23}$ 50,66 36,88 $M_e^{2,22}$ 70,93 $M_e^{3,22}$ 70,93 47,42 $M_e^{2,21}$ 91,19 $M_e^{3,22}$ 91,19 57,96 $M_e^{2,20}$ 111,46 $M_e^{3,20}$ 111,46 68,5 $M_e^{2,19}$ 131,72 $M_e^{3,19}$ 131,72 79,03 $M_e^{2,18}$ 151,99 $M_e^{3,18}$ 151,99 89,57 $M_e^{2,11}$ 172,25 $M_e^{3,11}$ 172,25 100,11 $M_e^{2,16}$ 192,52 $M_e^{3,16}$ 192,52 110,65 $M_e^{2,15}$ 212,78 $M_e^{3,15}$ 212,78 121,18 $M_e^{2,14}$ 233,05 $M_e^{3,14}$ 233,05 131,72 $M_e^{2,13}$ 253,31 $M_e^{3,12}$ 273,57 152,8 $M_e^{2,11}$ 293,84 $M_e^{3,10}$ 314,11 $M_e^{3,10}$ 314,11 $CKF_e = Torrowth M3 UC No.00 314,11 CKF_e = Torrowth M3 UC No.00 M_e = Torrowth M2 UC No.00 $	15,81 M _e ^{2,24} 30,4 M _e ^{3,24} 30,4 M _e ^{4,24} 26,34 M _e ^{2,23} 50,66 M _e ^{3,23} 50,66 M _e ^{4,23} 36,88 M _e ^{2,22} 70,93 M _e ^{3,22} 70,93 M _e ^{4,22} 47,42 M _e ^{2,21} 91,19 M _e ^{3,21} 91,19 M _e ^{4,21} 57,96 M _e ^{2,20} 111,46 M _e ^{3,20} 111,46 M _e ^{4,20} 68,5 M _e ^{2,19} 131,72 M _e ^{3,19} 131,72 M _e ^{4,19} 79,03 M _e ^{2,18} 151,99 M _e ^{3,18} 151,99 M _e ^{4,18} 89,57 M _e ^{2,17} 172,25 M _e ^{3,17} 172,25 M _e ^{4,17} 100,11 M _e ^{2,16} 192,52 M _e ^{3,16} 192,52 M _e ^{4,16} 110,65 M _e ^{2,15} 212,78 M _e ^{3,15} 212,78 M _e ^{4,15} 121,18 M _e ^{2,14} 233,05 M _e ^{3,14} 233,05 M _e ^{4,15} 131,72 M _e ^{2,13} 253,31 M _e ^{3,13} 253,31 M _e ^{4,15} 142,26 M _e ^{2,12} 273,57 M _e ^{3,12} 273,57 M _e ^{4,12} 152,8 M _e ^{2,11} 293,84 M _e ^{3,11} 293,84 M _e ^{4,11} 163,33 M _e ^{2,10} 314,11 M _e ^{3,10} 314,11 M _e ^{4,10} CKE «Fluk(M)31C» 14FL 0406	15,81 M _e ^{2,24} 30,4 M _e ^{3,24} 30,4 M _e ^{4,24} 15,81 26,34 M _e ^{2,23} 50,66 M _e ^{3,23} 50,66 M _e ^{4,23} 26,34 36,88 M _e ^{2,22} 70,93 M _e ^{3,22} 70,93 M _e ^{4,22} 36,88 47,42 M _e ^{2,21} 91,19 M _e ^{3,21} 91,19 M _e ^{4,21} 47,42 57,96 M _e ^{2,20} 111,46 M _e ^{3,20} 111,46 M _e ^{4,20} 57,96 68,5 M _e ^{2,19} 131,72 M _e ^{3,19} 131,72 M _e ^{4,19} 68,5 79,03 M _e ^{2,18} 151,99 M _e ^{3,18} 151,99 M _e ^{4,18} 79,03 89,57 M _e ^{2,17} 172,25 M _e ^{3,17} 172,25 M _e ^{4,17} 89,57 100,11 M _e ^{2,16} 192,52 M _e ^{3,16} 192,52 M _e ^{4,16} 100,11 110,65 M _e ^{2,15} 212,78 M _e ^{3,16} 192,52 M _e ^{4,16} 100,11 110,65 M _e ^{2,15} 233,05 M _e ^{3,14} 233,05 M _e ^{4,15} 110,65 121,18 M _e ^{2,14} 233,05 M _e ^{3,14} 233,05 M _e ^{4,14} 121,18 131,72 M _e ^{2,12} 273,57 M _e ^{3,12} 273,57 M _e ^{4,12} 142,26 152,8 M _e ^{2,11} 293,84 M _e ^{3,11} 293,84 M _e ^{4,11} 152,8 163,33 M _e ^{2,10} 314,11 M _e ^{3,10} 314,11 M _e ^{4,10} 163,33 CKE a Final Mag a Can a M _e A

$\mathbf{M}_{\mathrm{e}}^{1,8}$	184,41	$M_e^{2,8}$	354,63	$\mathbf{M_e}^{3,8}$	354,63	$\mathbf{M_e}^{4,8}$	184,41
$\mathbf{M}_{\mathrm{e}}^{1,7}$	194,95	$\mathbf{M_e}^{2,7}$	374,9	$\mathbf{M}_{\mathrm{e}}^{3,7}$	374,9	$\mathbf{M_e}^{4,7}$	194,95
$\mathbf{M}_{\mathrm{e}}^{1,6}$	205,48	$\mathbf{M_e}^{2,6}$	395,16	$\mathbf{M_e}^{3,6}$	395,16	$\mathbf{M_e}^{4,6}$	205,48
$\mathbf{M}_{\mathrm{e}}^{1,5}$	216,02	$M_e^{2,5}$	415,43	$\mathbf{M_e}^{3,5}$	415,43	$\mathbf{M_e}^{4,5}$	216,02
$\mathbf{M}_{\mathrm{e}}^{1,4}$	226,56	$\mathbf{M_e}^{2,4}$	435,69	$\mathbf{M_e}^{3,4}$	435,69	$\mathbf{M_e}^{4,4}$	226,56
$\mathbf{M}_{\mathrm{e}}^{1,3}$	237,1	$\mathbf{M_e}^{2,3}$	455,96	$\mathbf{M_e}^{3,3}$	455,96	$\mathbf{M_e}^{4,3}$	237,1
$\mathbf{M_e}^{1,2}$	247,64	$\mathbf{M_e}^{2,2}$	476,22	$\mathbf{M_e}^{3,2}$	476,22	$\mathbf{M_e}^{4,2}$	247,64
$\mathbf{M}_{\mathrm{e}}^{\mathrm{Bl,l}}$	172,12	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B2,1}}$	330,99	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B3,1}}$	330,99	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B4,1}}$	172,12
$\mathbf{M}_{\mathrm{e}}^{\mathrm{H1,1}}$	344,23	$\mathbf{M}_{\mathrm{e}}^{\mathrm{H2,1}}$	661,98	$\mathbf{M}_{\mathrm{e}}^{\mathrm{H3,1}}$	661,98	$\mathbf{M}_{\mathrm{e}}^{\mathrm{H4,1}}$	344,23

Изм.	Лист.	№ документа	Подп.	Дата.

Изм.	Лист.	№ документа	Подп.	Дата.

Изм.	Лист.	№ документа	Подп.	Дата.

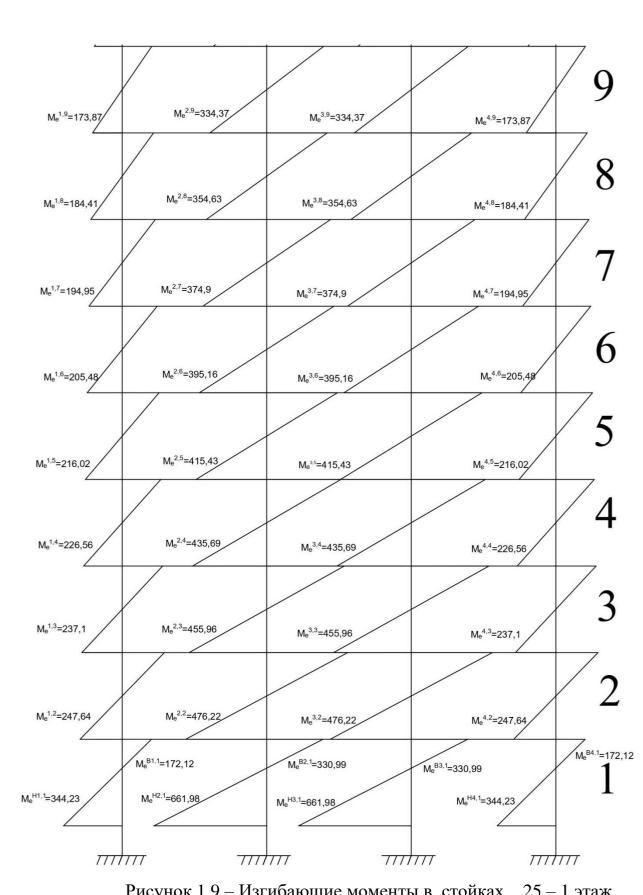


Рисунок 1.9 -Изгибающие моменты в стойках 25 - 1 этаж

					СКБ «ПиИМЗиС».1.ИП.01000000					
Изм.	Лист.	№ документа	Подп.	Дата.	CKB «ПиймзиС». Г.ИП.0 1000000	31				

1.4 Определение изгибающих моментов в сечениях ригеля

Изгибающие моменты в сечениях ригеля определяем из условия равновесия узлов рамы. Сумма моментов в узле равно 0, поэтому изгибающий момент в ригеле равен сумме моментов в колонах, примыкающих к узла. При двух ригелях в узле суммарный изгибающий момент в колоннах делится между ними пропорционально изгибной жесткости ригелей.

Изгибающие моменты в сечениях ригелей определяются по следующей формуле:

Для 25 этажа:

$$M_{1.25} = M_{1.25}; (1.15)$$

Для 24 – 1 этажей:

$$M_{i,i-1} = M_{i,i-1} + M_{i,i-1}. (1.16)$$

Тогда значения изгибающих моментов в сечениях ригеля, посчитанные по формулам (1.15) и (1.16) отображены в таблице 1.6.

Таблица 1.6 – Изгибающие моменты в ригеле

Γ	$M_6^{1,25}$	5,27	$M_6^{2,25}$	5,07	$\mathbf{M}_{6}^{3,25}$	5,07	$M_6^{4,25}$	5,07	$M_6^{5,25}$	5,07	$M_6^{6,25}$	5,27]
		3,27		3,07		3,07		3,07		3,07		3,27	
	$M_6^{1,24}$	21,08	$M_6^{2,24}$	20,27	$M_6^{3,24}$	20,27	$M_6^{4,24}$	20,27	$M_6^{5,24}$	20,27	$\mathbf{M}_{6}^{6,24}$	21,08	
	$M_6^{1,23}$	42,15	$M_6^{2,23}$	40,53	$M_6^{3,23}$	40,53	${\bf M_6}^{4,23}$	40,53	${\bf M_6}^{5,23}$	40,53	${\bf M_6}^{6,23}$	42,15	
	$M_6^{1,22}$	63,22	$M_6^{2,22}$	60,8	$M_6^{3,22}$	60,8	$M_6^{4,22}$	60,8	$M_6^{5,22}$	60,8	${\bf M_6}^{6,22}$	63,22	-
	$\mathbf{M}_{6}^{1,21}$	84,3	$\mathbf{M}_{6}^{2,21}$	81,06	$\mathbf{M}_{6}^{3,21}$	81,06	$\mathbf{M}_{6}^{4,21}$	81,06	$\mathbf{M}_{6}^{5,21}$	81,06	$\mathbf{M}_{6}^{6,21}$	84,3	
	$M_6^{1,20}$	105,38	$\mathbf{M_6}^{2,20}$	101,33	${\bf M_6}^{3,20}$	101,33	$\mathbf{M}_{6}^{4,20}$	101,33	$\mathbf{M}_{6}^{5,20}$	101,33	$\mathbf{M_6}^{6,20}$	105,38	
	$\mathbf{M}_{6}^{1,19}$	126,46	$\mathbf{M}_{6}^{2,19}$	121,59	$\mathbf{M}_{6}^{3,19}$	121,59	$\mathbf{M_6}^{4,19}$	121,59	$\mathbf{M}_{6}^{5,19}$	121,59	$\mathbf{M_6}^{6,19}$	126,46	
	$\mathbf{M}_{6}^{1,18}$	147,53	$\mathbf{M}_{6}^{2,18}$	141,86	$\mathbf{M}_{6}^{3,18}$	141,86	$\mathbf{M}_{6}^{4,18}$	141,86	$\mathbf{M}_{6}^{5,18}$	141,86	$\mathbf{M}_{6}^{6,18}$	147,53	
	$\mathbf{M}_{6}^{1,17}$	168,6	$\mathbf{M_6}^{2,17}$	162,12	$\mathbf{M}_{6}^{3,17}$	162,12	$\mathbf{M_6}^{4,17}$	162,12	$\mathbf{M_6}^{5,17}$	162,12	$\mathbf{M_6}^{6,17}$	168,6	
	$\mathbf{M}_{6}^{1,16}$	189,68	$\mathbf{M_6}^{2,16}$	182,39	$\mathbf{M}_{6}^{3,16}$	182,39	$\mathbf{M}_{6}^{4,16}$	182,39	$\mathbf{M}_{6}^{5,16}$	182,39	$\mathbf{M}_{6}^{6,16}$	189,68	
	$\mathbf{M}_{6}^{1,15}$	210,76	$\mathbf{M_6}^{2,15}$	202,65	$\mathbf{M}_{6}^{3,15}$	202,65	$\mathbf{M_6}^{4,15}$	202,65	$\mathbf{M}_{6}^{5,15}$	202,65	$M_6^{6,15}$	210,76	
	$\mathbf{M}_{6}^{1,14}$	231,83	$M_6^{2,14}$	222,92	$M_6^{3,14}$	222,92	$\mathbf{M}_{6}^{4,14}$	222,92	$\mathbf{M}_{6}^{5,14}$	222,92	$\mathbf{M}_{6}^{6,14}$	231,83	
	$\mathbf{M}_{6}^{1,13}$	252,9	$\mathbf{M}_{6}^{2,13}$	243,18	$M_6^{3,13}$	243,18	$M_6^{4,13}$	243,18	$M_6^{5,13}$	243,18	$M_6^{6,13}$	252,9	
1	M ₅ ^{1,12}	273,98	$M_6^{-2,12}$	263,44	${\bf M}_6^{3,12}$	263,4 4	Μ _. ^{4,12} (Β΄∛Πυ	<i>Miss</i> tac		39340	0 0 6,12	273,98	Лист
luc	:m. № č	окумента	Подп.	Дата.		<u> </u>							32

$\mathbf{M}_{6}^{1,11}$	295,06	$\mathbf{M_6}^{2,11}$	283,71	$M_6^{3,11}$	283,71	$\mathbf{M}_{6}^{4,11}$	283,71	$M_6^{5,11}$	283,71	$M_6^{6,11}$	295,06
$\mathbf{M}_{6}^{1,10}$	316,13	${\bf M_6}^{2,10}$	303,98	$\mathbf{M}_{6}^{3,10}$	303,98	${\bf M_6}^{4,10}$	303,98	$\mathbf{M}_{6}^{5,10}$	303,98	$\mathbf{M}_{6}^{}$	316,13
$\mathbf{M}_{6}^{1,9}$	337,2	$\mathbf{M}_6^{2,9}$	324,24	$\mathbf{M}_{6}^{3,9}$	324,24	$\mathbf{M}_{6}^{4,9}$	324,24	$\mathbf{M}_{6}^{5,9}$	324,24	$\mathbf{M}_{6}^{6,9}$	337,2
$\mathbf{M}_{6}^{1,8}$	358,28	$\mathbf{M_6}^{2,8}$	344,5	$\mathbf{M}_{6}^{3,8}$	344,5	$\mathbf{M}_{6}^{4,8}$	344,5	$\mathbf{M_6}^{5,8}$	344,5	$\mathbf{M_6}^{6,8}$	358,28
$\mathbf{M}_{6}^{1,7}$	379,36	$\mathbf{M}_{6}^{2,7}$	364,77	$\mathbf{M}_{6}^{3,7}$	364,77	$\mathbf{M}_{6}^{4,7}$	364,77	$\mathbf{M}_{6}^{5,7}$	364,77	$\mathbf{M}_{6}^{6,7}$	379,36
$\mathbf{M}_{6}^{1,6}$	400,43	$\mathbf{M}_{6}^{2,6}$	385,03	$\mathbf{M}_{6}^{3,6}$	385,03	$\mathbf{M}_{6}^{4,6}$	385,03	$\mathbf{M}_{6}^{5,6}$	385,03	$\mathbf{M_6}^{6,6}$	400,43
$\mathbf{M}_{6}^{1,5}$	421,5	$\mathbf{M}_{6}^{2,5}$	405,3	$\mathbf{M}_{6}^{3,5}$	405,3	$\mathbf{M}_{6}^{4,5}$	405,3	$\mathbf{M}_{6}^{5,5}$	405,3	$\mathbf{M_6}^{6,5}$	421,5
$\mathbf{M}_{6}^{1,4}$	442,58	$\mathbf{M}_{6}^{2,4}$	425,56	$\mathbf{M}_{6}^{3,4}$	425,56	$\mathbf{M}_{6}^{4,4}$	425,56	$\mathbf{M}_{6}^{5,4}$	425,56	$\mathbf{M}_{6}^{6,4}$	442,58
$\mathbf{M}_{6}^{1,3}$	463,66	$\mathbf{M_6}^{2,3}$	445,83	$\mathbf{M}_{6}^{3,3}$	445,83	$\mathbf{M}_{6}^{4,3}$	445,83	$\mathbf{M}_{6}^{5,3}$	445,83	$\mathbf{M_6}^{6,3}$	463,66
$\mathbf{M}_{6}^{1,2}$	484,74	$\mathbf{M_6}^{2,2}$	466,09	$\mathbf{M}_{6}^{3,2}$	466,09	$\mathbf{M_6}^{4,2}$	466,09	$\mathbf{M}_{6}^{5,2}$	466,09	$\mathbf{M_6}^{6,2}$	484,74
$\mathbf{M}_{6}^{1,1}$	419,76	$\mathbf{M}_{6}^{2,1}$	403,61	$\mathbf{M}_{6}^{3,1}$	403,61	$\mathbf{M}_{6}^{4,1}$	403,61	$\mathbf{M}_{6}^{5,1}$	403,61	$\mathbf{M}_{6}^{6,1}$	419,76

Изм.	Лист.	№ документа	Подп.	Дата.

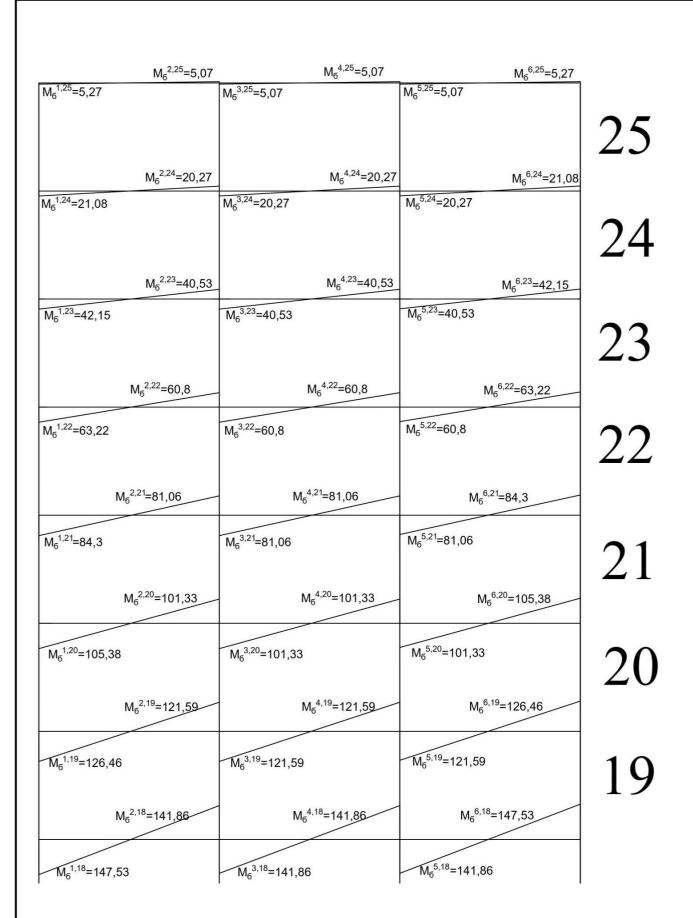


Рисунок 1.10 – Изгибающие моменты в ригелях с 25-19 этаж

					СКБ «ПиИМЗиС».1.ИП.01000000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	CKB ((1 lavilvidae)). 1.vii 1.0 1000000	34

M ₆ ^{2,17} =162,12	M ₆ ^{4,17} =162,12	M ₆ ^{6,17} =168,6	18
M ₆ ^{1,17} =168,6	M ₆ ^{3,17} =162,12	M ₆ ^{5,17} =162,12	17
M ₆ ^{2,16} =182,39	M ₆ ^{4,16} =182,39	M ₆ ^{6,16} =189,68	17
M ₆ ^{1,16} =189,68	M ₆ ^{3,16} =182,39	M ₆ ^{5,16} =182,39	16
M ₆ ^{2,15} =202,65	M ₆ ^{4,15} =202,65	M ₆ ^{6,15} =210,76	10
$M_6^{1,15}$ =210,76	M ₆ ^{3,15} =202,65	M ₆ ^{5,15} =202,65	15
M ₆ ^{2,14} =222,92	M ₆ ^{4,14} =222,92	M ₆ ^{6,14} =231,83	
M ₆ ^{1,14} =231,83	M ₆ ^{3,14} =222,92	M ₆ ^{5,14} =222,92	14
M ₆ ^{2,13} =243,18	M ₆ ^{4,13} =243,18	M ₆ ^{6,13} =252,9	1.0
M ₆ ^{1,13} =252,9	M ₆ ^{3,13} =243,18	M ₆ ^{5,13} =243,18	13
M ₆ ^{2,12} =263,44	M ₆ ^{4,12} =263,44	M ₆ ^{6,12} =273,98	4.0
$M_6^{1,12}=273,98$ $M_6^{2,11}=283,71$	$M_6^{3,12}$ =263,44 $M_6^{4,11}$ =283,71	M ₆ ^{5,12} =263,44	12
	, 255,17	M ₆ ^{6,11} =295,06	1 1
$M_6^{1,11}=295,06$ $M_6^{2,10}=303,98$	M ₆ ^{3,11} =283,71	M ₆ ^{5,11} =283,71	11
1416 -303,30	M ₆ ^{4,10} =303,98	M ₆ ^{6,10} =316,13	10
$M_6^{1,10}$ =316,13 $M_6^{2,9}$ =324,24	M ₆ ^{3,10} =303,98	$M_6^{5,10}$ =303,98 $M_6^{6,9}$ =337,2	10
W ₆ -32-7,2-7	M ₆ ^{4,9} =324,24	1116 -001,2	Ω
M ₆ ^{1,9} =337,2	M ₆ ^{3,9} =324,24	M ₆ ^{5,9} =324,24	9
Рисунок 1.11	<u> -Изгибающие момент</u>	<u>гы в ригелях с 18 – 9 г</u>	этаж

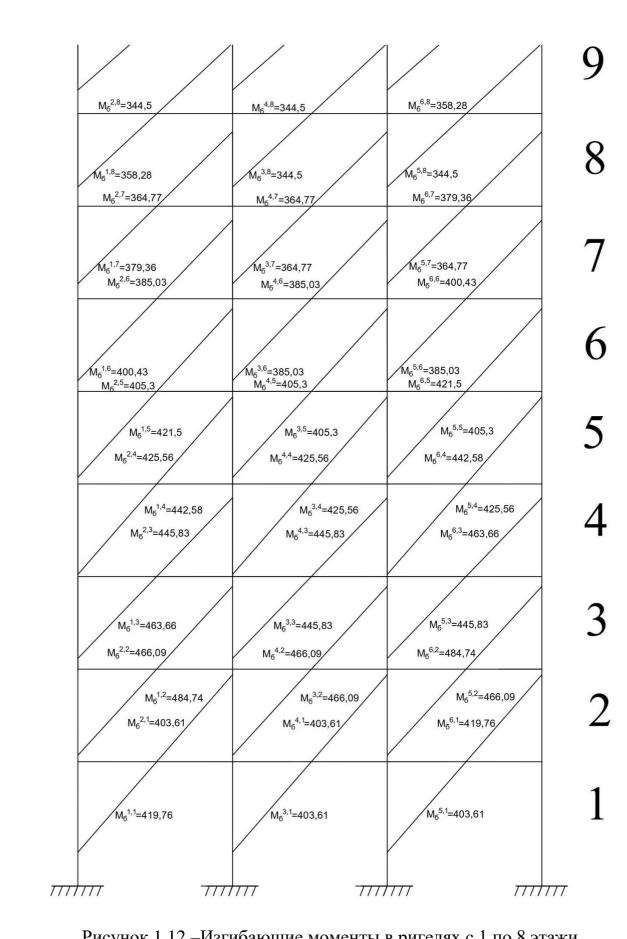


Рисунок 1.12 – Изгибающие моменты в ригелях с 1 по 8 этажи

					СКБ «ПиИМЗиС».1.ИП.01000000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	CNB ((Traviloidae)). 1.vii 1.0 1000000	36

1.5 Расчет ветровой нагрузки для 9 -ти этажной рамы

Рассмотрим 9-этажное каркасное здание с высотой этажа 3.6 метра. Расстояние от планировочной отметки до уровня пола первого этажа равно 0,8 метра, а высота парапета 0,6 метра. Тогда высота несущей системы $h = H = 9 \cdot 3.6 + 0.8 + 0.6 = 33.8$ м. Определим нормативное значение средней составляющей основной ветровой нагрузки для здания : d = 30м. Район строительства – г. Комсомольск-на-Амуре. Тип местности - В (городские территории). Ветровой район – III (0.38 кПа).

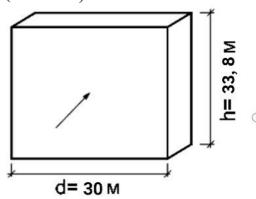


Рисунок 1.13 - Схема здания для определения средней составляющей ветровой нагрузки.

Оценим влияние длины многоэтажного здания на интенсивность ветровой нагрузки. Эквивалентная высота при длине здания:

d=30 м, h=33.8 м (при $d < h \le 2d$)

для $z \ge h-d \to z_e = h$, $(z \ge 3.8 \to z_e = 33.8)$, для $0 < z < h-d \to z_e = d$, $(0 < z < 3.8 \to z_e = 30)$.

График зависимости эквивалентной высоты z_e от высоты здания h для длины фасада представлены на рис 2.13.

Коэффициент $k(z_e)$ определяем по методу интерполяции в соответствии с табл.2. 2.

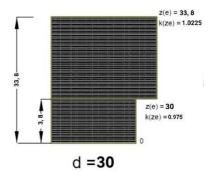


Рисунок 1.14 - график зависимости эквивалентной высоты z_e от высоты здания h

Определим нормативное значение средней составляющей ветровой нагрузки w_m для всех типов зданий по формуле: $w_m = w_0 \, k(z_e) \, c$,

					абл. 1, для III ветрового	Лист
	pai	юна);с - суг	имар	ный аэр	одинамич екъй Линиви С».1.ИП.01000000	
Изм	Лиди	H ^N f ∂ <u>o</u> kly,ng,nma	Подп.	Дата.	-	37

d=30 M, h=33.8 M

для h=3,8м,
$$w_{m1}$$
=0,38· 0,975 ·1,3=0,482 кH/м² для h=33,8 м, w_{m2} =0,38· 1,0225·1,3=0,505 кH/м²

Расчет нормативного значения пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_e определяем в следующем порядке. Вычисляем первую частоту собственных колебаний по формулам (1.6) и (1.7).

$$f_1 = \frac{1}{T_1} = \frac{1}{0.71} = 1,408 \frac{1}{c}$$

где
$$T_1 = 0.021h = 0.021 \cdot 33 \square \square = 0.71c$$
.

Затем определяем предельное значение частоты собственных колебаний по выражению (1.5) при $z_{3k} = 0.8h = 0.8 \cdot \square \square \square = 27.04$ и $k(z_{3k}) = 0.938$

$$f_{lim} = \frac{\sqrt{\mathsf{w_ok(z_{9K})}\,\mathsf{\gamma_f}}}{\mathsf{940T_{g,\,lim}}} = \frac{\sqrt{\,\mathsf{380*0,938*1,4}}}{\mathsf{940*0.023}} = 1,03\frac{1}{\mathsf{c}}.$$

Так как условие (1.4) f_{l} > f_{lim} выполняется, то нормативное значение пульсационной составляющей основной ветровой нагрузки w_g необходимо вычислять по формуле (1.3) $w_g = w_m \zeta(z_e)v$. Здесь $\zeta(z_e)$ - коэффициент пульсации давления ветра, принимаемый по таблице 1.3 в зависимости от эквивалентной высоты z_e ; v — коэффициент пространственной корреляции пульсаций давления ветра.

Определим значения коэффициента пульсации давления ветра $\zeta(z_e)$ по таблице 1.3 в зависимости от эквивалентной высоты z_e здания:

ze = 30 -
$$\zeta(z_e)$$
=0,86; z_e = 33,8 - $\zeta(z_e)$ =0,837.

Коэффициент пространственной корреляции пульсаций давления v вычислим для расчетной поверхности сооружения, с которой давление ветра передается на несущую систему здания. Значение v принимается в зависимости от величин p = d = 30м и $\chi = h = 33,8$ м. Тогда для здания имеем: при p = d = 30 и $\chi = h = 33,8$ м имеем v = 0,7093.

Таким образом нормативное значение пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_e (рис.1.15) будет равно:

для h=3,8 м,
$$w_g=0,482\cdot 0,86\cdot 0,7093=0,294$$
 кH/м² для h=33,8 м, $w_g=0,505\cdot 0,837\cdot 0,7093=0,3$ кH/м²;

Определим суммарные значения средней и пульсационной составляющих:

для h=3,8 м,
$$w = w_m + w_g = 0,482 + 0.294 = 0.776 \text{ кH/м}^2$$

ш			1. 22	0		. 0.50	25 . 0.2	0.005	тт/ 2	
			для 11—33	,0 M,	$ w-w_m $	$+ w_g = 0.50$)3 +0.5 =	0.803	KП/M	
┕						U] Jiucm
1			Определ	им р	асчетну	ую ветров	YCKB&/MU	<i>14</i> 11/1/33uH	Г уя <i>1</i> э гит 0 годионн ую норма	1
⊢	-	TITE								
И	зм.	ликт:	¹ W₽ dokymeHma t	У158⊓.	надажазк	у следует	. умножи	пь на	коэффициент надежност	и 38
			•							

по нагрузке γ_f =1,4 и коэффициент надежности по ответственности зданий γ_n = 1(нормальный уровень ответственности). При этом расчет элементов несущей системы выполняется по соответствующей грузовой площади. Так для поперечной рамы рамного каркаса ширина грузовой площади равна шагу рам B=6 м. Тогда значения расчетной нагрузки для различных вариантов зданий будут равны

для h=3,8 м,
$$w = 0.776 \cdot 1,4 \cdot 1 \cdot 6 = 6.5184 \text{ кH/м}^{\circ}$$
 для h=33,8 м, $w = 0.805 \cdot 1,4 \cdot 1 \cdot 6 = 6.762 \text{кH/м}^{\circ}$

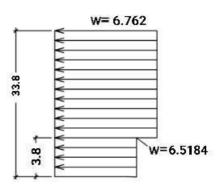


Рисунок 1.15- Эпюры расчетной основной ветровой нагрузки дляразличных вариантов зданий

Вычислим эквивалентную равномерно распределенную ветровую нагрузку $q_{_{3KB}}$ для полосы фасада здания шириной 1 м от суммарного действия средней и пульсационной составляющих. Предварительно определим изгибающие моменты для каждого варианта зданий.

$$\Sigma$$
M1 = 0.766 · 3,8 · (3,8/2) + 0.805 · 30· ((30/2) +3,8) = 459,551 кH·м;

Значение эквивалентной нагрузки найдем из равенства $\sum M = q_{_{9KB}} \cdot (h^2/2)$, тогда эквивалентная равномерно распределенная нагрузка будетравна $q_{_{9KB}} = (\sum M \cdot 2)/h^2$.

$$\overline{Q}_{9KB1} = (459,551 \cdot 2)/33,8^2 = 0.8 \text{ kH/m}^2;$$

Тогда значения расчетной эквивалентной нагрузки для различных вариантов зданий будут равны

$$w_1 = q_{9KB1} \cdot \gamma_f \cdot \gamma_n \cdot B = 0.8 \cdot 1.4 \cdot 1.6 = 6.72 \text{ kH/m}$$

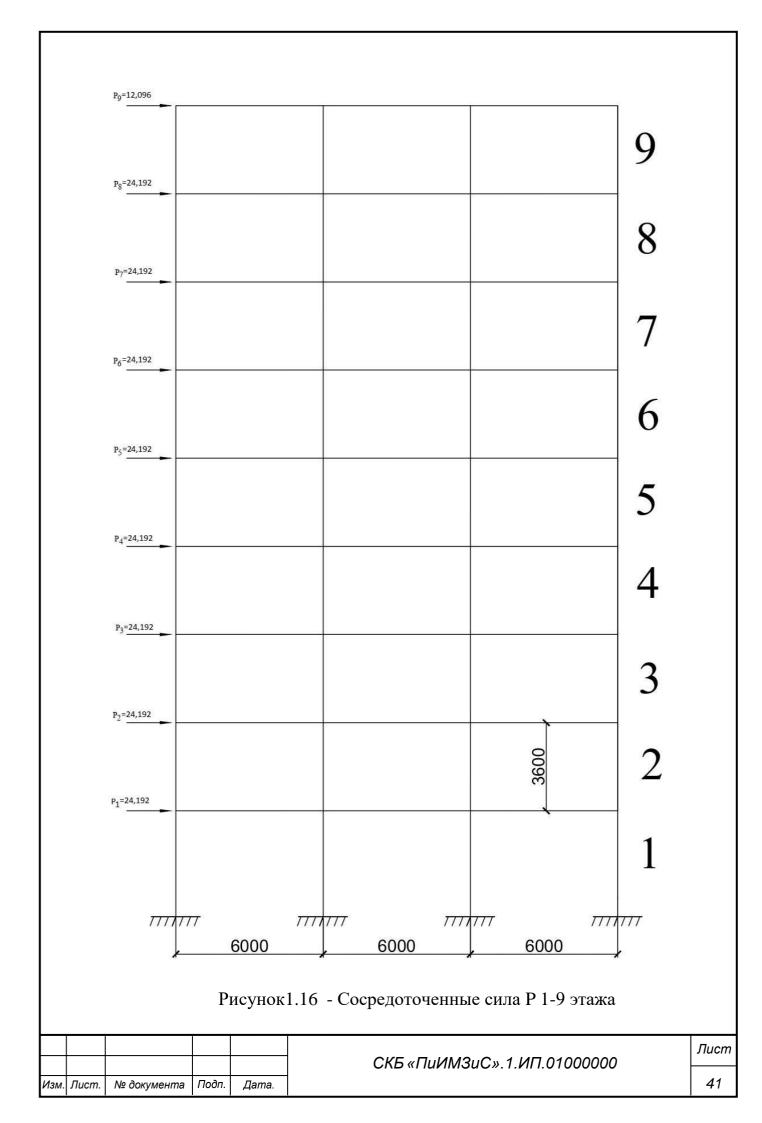
					CVE "FUMM2"C" 1 MF 0100000	Лист		
Изм.		No downsoums	Подп.	Пото	СКБ «ПиИМЗиС».1.ИП.01000000			
ИЗМ.	Лист.	№ документа	110011.	Дата.		39		

1.6 Определение изгибающих моментов в колоннах 9 -ти этажной рамы от ветровой нагрузки

Расчет на горизонтальные (ветровые) нагрузки выполняем приближенным методом. Распределенную горизонтальную нагрузку заменяем сосредоточенными силами, приложенные к узлам рамы (рис. 1.17, 1.18).

Рассчитывается сосредоточенная сила с первого по девятый этаж и определяется по формуле:

$$P_{1-8} = w_1 * h_{3T}; (1.17)$$


Для верхнего узла узловая нагрузка (т.к. плечо равно половине высоты этажа), будет равна:

$$P_9 = w_1 * \frac{h_{9T}}{2}; (1.18)$$

Тогда:

$$P_{1-8} = 6.72 * 3,6 = 24,192 kN;$$

 $P_{9} = 6,72 * \frac{3,6}{2} = 12,096 kN;$

					СКБ «ПиИМЗиС».1.ИП.01000000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	CND WITHWINGON. 1.VIII 1.0 TOUGOOD	40

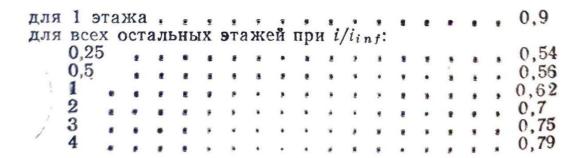
Определяем для каждого яруса (этажа) обобщенную поперечную силу.

Ярусные поперечные силы определяются по формуле:

$$Q_9 = P_9 = 12,096 \,\mathrm{kN};$$
 $Q_8 = P_9 + P_8 = 36,228 \,\mathrm{kN};$ $Q_7 = P_9 + P_8 + P_7 = 60,48 \,\mathrm{kN};$ $Q_6 = P_9 + P_8 + P_7 + P_6 = 84,672 \,\mathrm{kN};$ $Q_5 = P_9 + P_8 + P_7 + P_6 + P_5 = 108,864 \,\mathrm{kN};$ $Q_4 = P_9 + P_8 + P_7 + P_6 + P_5 + P_4 = 133,056 \,\mathrm{kN};$ $Q_3 = P_9 + P_8 + P_7 + P_6 + P_5 + P_4 + P_3 = 157,248 \,\mathrm{kN};$ $Q_2 = P_9 + P_8 + P_7 + P_6 + P_5 + P_4 + P_3 + P_2 = 181,44 \,\mathrm{kN};$ $Q_1 = P_9 + P_8 + P_7 + P_6 + P_5 + P_4 + P_3 + P_2 = 181,44 \,\mathrm{kN};$

Они распределяются между отдельными стойками пропорционально жесткости.

Крайние стойки рамы, имеющие меньшую степень защемления в узле, чем средние стойки (поскольку к крайнему узлу ригель примыкает только с одной стороны), воспринимают относительно меньшую долю яруснойпоперечной силы, что учитывается в расчете условным уменьшением жесткости крайних стоек.Вычислим жесткости колонны и ригеля и их отношение.


$$i_{6} = \frac{E\Gamma_{6}}{e_{6}} = \frac{B_{6}h_{6}^{3}}{12\times6} = \frac{0,25\times0,6^{3}}{72} = 0,00075;$$

$$i_{c} = \frac{E\Gamma_{c}}{e_{c}} = \frac{B_{c}h_{c}^{3}}{12\times3,6} = \frac{0,5\times0,5^{3}}{43,2} = 0,00144;$$

$$\frac{i_{6}}{i_{c}} = \frac{0,00075}{0,00144} = 0,52$$

Коэффициент β определим по таблице 1 [6]

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изі	1. Лист.	№ документа	Подп.	Дата.		42

Для крайних колонн коэффициент β =0,52<1 . Тогда суммарная жесткость яруса 0,52+1+1+0,52=3,04.

Тогда для крайних колонн 1 и 4:

$$Q_{1,i} = \frac{0,52}{3,04} * Q_i;$$

$$Q_{4,i} = \frac{0,52}{3,04} * Q_i;$$

Для средних колонн 2-3:

$$Q_{2,i} = \frac{1}{3,04} * Q_i;$$

$$Q_{3,i} = \frac{1}{3,04} * Q_i;$$

В таблице № 3 отражены усилия от нагрузки.

 $Q_9 = 12,09 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3,04} * Q_{25} = 2,069; Q_{2,9} = \frac{1}{3,04} * Q_{25} = 3,979;$$

$$Q_{3,9} = \frac{1}{3,04} * Q_{25} = 3,979; Q_{4,9} = \frac{0,52}{3,04} * Q_{25} = 2,069;$$

 $Q_8 = 36,228 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3.04} * Q_{25} = 6,197; Q_{2,9} = \frac{1}{3.04} * Q_{25} = 11,917;$$

$$Q_{3,9} = \frac{1}{3,04} * Q_{25} = 11,917; Q_{4,9} = \frac{0,52}{3,04} * Q_{25} = 6,197;$$

	Q_7	$= 60,48 \mathrm{K}$	N;			Лист
		·			СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		43

$$Q_{1,9} = \frac{0,52}{3,04} * Q_{25} = 10,345; Q_{2,9} = \frac{1}{3,04} * Q_{25} = 19,895;$$

$$Q_{3,9} = \frac{1}{3.04} * Q_{25} = 19,895; Q_{4,9} = \frac{0,52}{3.04} * Q_{25} = 10,345;$$

 $Q_6 = 84,672 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3.04} * Q_{25} = 14,483; Q_{2,9} = \frac{1}{3.04} * Q_{25} = 27,853;$$

$$Q_{3,9} = \frac{1}{3.04} * Q_{25} = 27,853; Q_{4,9} = \frac{0,52}{3.04} * Q_{25} = 14,483;$$

 $Q_5 = 108,864 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3,04} * Q_{25} = 18,621; Q_{2,9} = \frac{1}{3,04} * Q_{25} = 35,811;$$

$$Q_{3,9} = \frac{1}{3.04} * Q_{25} = 35,811; Q_{4,9} = \frac{0,52}{3.04} * Q_{25} = 18,621;$$

 $Q_4 = 133,056 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3,04} * Q_{25} = 22,76; Q_{2,9} = \frac{1}{3,04} * Q_{25} = 43,768;$$

$$Q_{3,9} = \frac{1}{3.04} * Q_{25} = 43,768; Q_{4,9} = \frac{0,52}{3.04} * Q_{25} = 22,76;$$

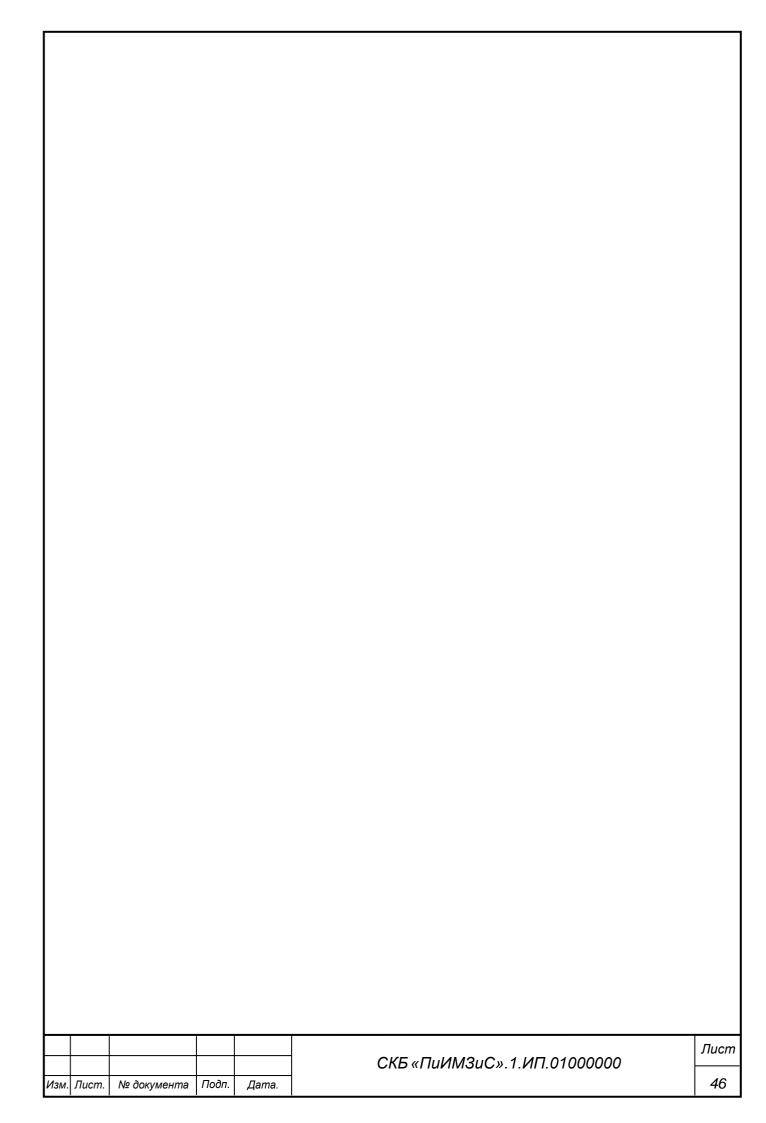
 $Q_3 = 157,248 \text{ kN};$

$$Q_{1,9} = \frac{0,52}{3.04} * Q_{25} = 26,898; Q_{2,9} = \frac{1}{3.04} * Q_{25} = 51,726;$$

$$Q_{3,9} = \frac{1}{3.04} * Q_{25} = 51,726; Q_{4,9} = \frac{0,52}{3.04} * Q_{25} = 26,898;$$

 $Q_2 = 181,44 \text{ kN};$

$$Q_{1,9} = \frac{0.52}{3.04} * Q_{25} = 31,036; Q_{2,9} = \frac{1}{3.04} * Q_{25} = 59,684;$$


$$Q_{3,9} = \frac{1}{3,04} * Q_{25} = 59,684; Q_{4,9} = \frac{0,52}{3,04} * Q_{25} = 31,036;$$

Q = 205,632 кN; Изм. Лист. № документа Подп. Дата. СКБ «ПиИМЗиС».1.ИП.01000000

Лист

Q	$Q_{1.9} = \frac{0.52}{3.04} * Q_{25} =$	= 35,174; Q _{2.9} =	$\frac{1}{3,04} * Q_{25} = 67,64$	1 2;	
	,		$\frac{0,52}{3,04} * Q_{25} = 35,17$		
Q ₉ =12.096	Q _{1,9} =2.069	Q _{2,9} =3.979	Q _{3,9} =3.979	Q _{4,9} =2.069	
Q ₈ =36.228	Q _{1,8} =6.197	Q _{2,8} =11.917	Q _{3,8} =11.917	Q _{4,8} =6.197	
Q ₇ =60.48	Q _{1,7} =10.345	Q _{2,7} =19.895	Q _{3,7} =19.895	Q _{4,7} =10.345	
Q ₆ =84.672	Q _{1,6} =14.483	Q _{2,6} =27.853	Q _{3,6} =27.853	Q _{4,6} =14.483	
Q ₅ =108.864	Q _{1,5} =18.621	Q _{2,5} =35.811	Q _{3,5} =35.811	Q _{4,5} =18.621	
Q ₄ =133.056	Q _{1,4} =22.76	Q _{2,4} =43.768	Q _{3,4} =43.768	Q _{4,4} =22.76	
Q ₃ =157.248	Q _{1,3} =26.898	Q _{2,3} =51.726	Q _{3,3} =51.726	Q _{4,3} =26.898	
Q ₂ =181.44	Q _{1,2} =31.036	Q _{2,2} =59.684	Q _{3,2} =59.684	Q _{4,2} =31.036	
Q ₁ =205.632	Q _{1,1} =35.174	Q _{2,1} =67.642	Q _{3,1} =67.642	Q _{4,1} =35.174	
7777	777	7777 77	77777	1777	
- ∟ :	6000	6000	6000	Ли	ст
No dovernous	Рисунок 1.17 - па Подп. Дата.	Поперечные Син	₩₽ ५ ₽% _™ Ъ <i>₩Ъ₽</i> ₽₩₩	000	15
№ докуменп	па Подп. Дата.			4	J

Изм. Лист.

Моменты для 1 и 6 колонны определяются по следующей формуле:

$$M_{i,i} = \frac{h_{\text{3T}}}{2} * Q_{i,i};$$
 (1.19)

Для первого этажа формула для изгибающего момента будет иметь вид:

$$M_{Bi,i} = \frac{1}{3} * h_{T} * Q_{i,i};$$
 (1.20)

$$M_{\text{B}i,i} = \frac{2}{3} * h_{\text{9T}} * Q_{i,i};$$
 (1.21)

Тогда результат вычисления моментов по формуле (1.19), отображены в таблице 1.7.

Таблица 1.7 – Изгибающие моменты в колонах

$\mathbf{M}_{\mathrm{e}}^{1,9}$	3,72	$\mathbf{M}_{\mathrm{e}}^{2,9}$	7,16	$\mathbf{M}_{\mathrm{e}}^{3,9}$	7,16	$\mathbf{M}_{\mathrm{e}}^{4,9}$	3,72
$\mathbf{M}_{\mathrm{e}}^{1,8}$	11,15	$\mathbf{M}_{\mathrm{e}}^{2,8}$	21,45	$M_e^{3,8}$	21,45	$\mathbf{M}_{\mathrm{e}}^{4,8}$	11,15
$\mathbf{M}_{\mathrm{e}}^{1,7}$	18,62	$M_e^{2,7}$	35,81	$M_e^{3,7}$	35,81	$\mathbf{M}_{\mathrm{e}}^{4,7}$	18,62
$\mathbf{M}_{\mathrm{e}}^{1,6}$	26,07	$\mathbf{M}_{\mathrm{e}}^{2,6}$	50,14	$M_e^{3,6}$	50,14	$\mathbf{M_e}^{4,6}$	26,07
$\mathbf{M}_{\mathrm{e}}^{1,5}$	33,52	$\mathbf{M}_{\mathrm{e}}^{2,5}$	64,46	$M_e^{3,5}$	64,46	$\mathbf{M_e}^{4,5}$	33,52
$\mathbf{M}_{\mathrm{e}}^{1,4}$	40,97	$M_e^{2,4}$	78,78	$\mathbf{M}_{\mathrm{e}}^{3,4}$	78,78	$\mathbf{M}_{\mathrm{e}}^{4,4}$	40,97
$\mathbf{M}_{\mathrm{e}}^{1,3}$	48,42	$\mathbf{M}_{\mathrm{e}}^{2,3}$	93,11	$M_e^{3,3}$	93,11	$\mathbf{M_e}^{4,3}$	48,42
$\mathbf{M}_{\mathrm{e}}^{1,2}$	55,86	$M_e^{2,2}$	107,43	$M_e^{3,2}$	107,43	$\mathbf{M_e}^{4,2}$	55,86
M _e ^{B1,1}	42,21	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B2,1}}$	81,17	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B3,1}}$	81,17	$\mathbf{M}_{\mathrm{e}}^{\mathrm{B4,1}}$	42,21
$\mathbf{M}_{\mathrm{e}}^{\mathrm{H1,1}}$	63,31	M _e ^{H2,1}	121,76	M _e ^{H3,1}	121,76	$\mathbf{M}_{\mathrm{e}}^{\mathrm{H4,1}}$	63,31

					CKE «ПиИМЗиС» 1 ИП 0100000	Лист	
					СКБ «ПиИМЗиС».1.ИП.01000000		
Изм.	Лист.	№ документа	Подп.	Дата.		47	

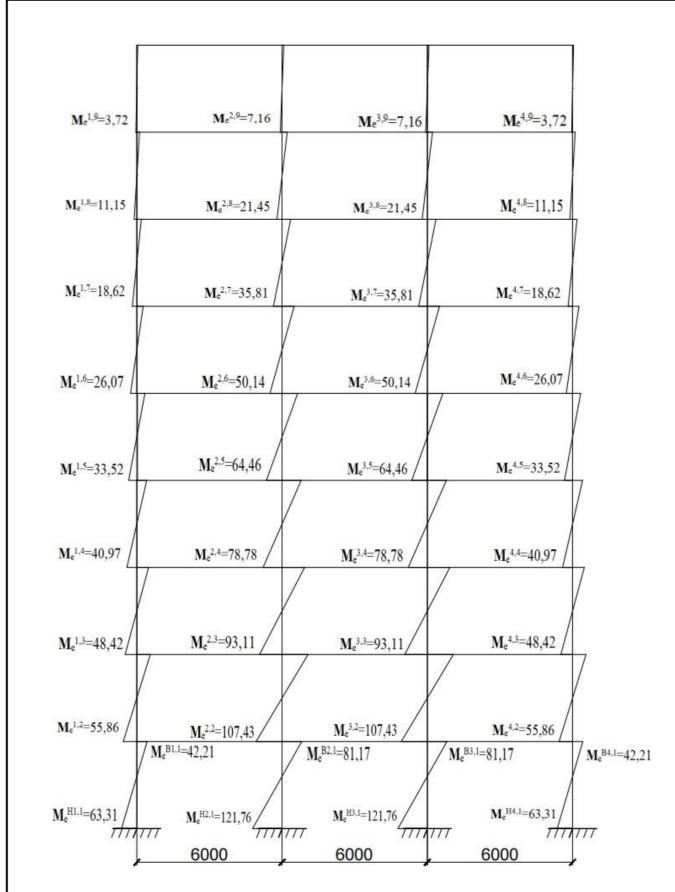


Рисунок 1.18 — Изгибающие моменты с 9 — 1 этаж

						Лист		
					СКБ «ПиИМЗиС».1.ИП.01000000			
Изм.	Лист.	№ документа	Подп.	Дата.		48		

1.7 Определение изгибающих моментов в ригелях 9 -ти этажной рамы от ветровой нагрузки

Изгибающие моменты в сечениях ригеля определяем из условия равновесия узлов рамы. Сумма моментов в узле равно 0, поэтому изгибающий момент в ригеле равен сумме моментов в колонах,примыкающих к узла. При двух ригелях в узле суммарный изгибающий момент в колоннах делится между ними пропорционально изгибной жесткости ригелей [5,7,8]. .

Изгибающие моменты в сечениях ригелей определяются по следующей формуле:

Для 9 этажа:

$$M_{1.9} = M_{1.9};$$
 (1.22)

Для 28 – 1 эта-

жей:

$$M_{i,i-1} = M_{i,i-1} + M_{i,i-1}.$$
 (1.23)

Тогда значения изгибающих моментов в сечениях ригеля, посчитанные по формулам (1.22) и (1.23) отображены в таблице 1.8.

Таблица 1.8 – Изгибающие моменты в ригеле

$\mathbf{M}_{6}^{1,9}$	3,72	$\mathbf{M}_{6}^{2,9}$	3,58	$\mathbf{M}_{6}^{3,9}$	3,58	$\mathbf{M}_{6}^{4,9}$	3,58	$M_6^{5,9}$	3,58	$\mathbf{M_6}^{6,9}$	3,72
$\mathbf{M}_{6}^{1,8}$	14,87	$\mathbf{M}_{6}^{2,8}$	14,31	$\mathbf{M}_{6}^{3,8}$	14,31	$\mathbf{M_{6}}^{4,8}$	14,31	M ₆ ^{5,8}	14,31	$\mathbf{M}_{6}^{6,8}$	14,87
$\mathbf{M}_{6}^{1,7}$	29,77	$\mathbf{M_6}^{2,7}$	28,63	$M_6^{3,7}$	28,63	$\mathbf{M}_{6}^{4,7}$	28,63	$\mathbf{M}_{6}^{5,7}$	28,63	$\mathbf{M}_{6}^{6,7}$	29,77
$\mathbf{M}_{6}^{1,6}$	44,69	$M_6^{2,6}$	42,98	$M_6^{3,6}$	42,98	$\mathbf{M_6}^{4,6}$	42,98	$\mathbf{M}_{6}^{5,6}$	42,98	$\mathbf{M}_{6}^{6,6}$	44,69
$M_6^{1,5}$	59,59	$\mathbf{M}_{6}^{2,5}$	57,3	$\mathbf{M}_{6}^{3,5}$	57,3	$\mathbf{M}_{6}^{4,5}$	57,3	$\mathbf{M}_{6}^{5,5}$	57,3	$\mathbf{M}_{6}^{6,5}$	59,59
$\mathbf{M}_{6}^{1,4}$	74,49	$\mathbf{M}_{6}^{2,4}$	71,62	$\mathbf{M}_{6}^{3,4}$	71,62	$\mathbf{M}_{6}^{4,4}$	71,62	$\mathbf{M}_{6}^{5,4}$	71,62	$\mathbf{M}_{6}^{6,4}$	74,49
$\mathbf{M}_6^{1,3}$	89,39	$\mathbf{M_6}^{2,3}$	85,95	$\mathbf{M}_{6}^{3,3}$	85,95	$\mathbf{M}_{6}^{4,3}$	85,95	$\mathbf{M}_{6}^{5,3}$	85,95	${\bf M_6}^{6,3}$	89,39
$\mathbf{M}_6^{1,2}$	104,28	$\mathbf{M_6}^{2,2}$	100,27	$\mathbf{M}_{6}^{3,2}$	100,27	$\mathbf{M_6}^{4,2}$	100,27	$\mathbf{M}_{6}^{5,2}$	100,27	$\mathbf{M}_{6}^{6,2}$	104,28
$\mathbf{M}_{6}^{1,1}$	98,07	$\mathbf{M}_{6}^{2,1}$	94,3	$\mathbf{M}_{6}^{3,1}$	94,3	$\mathbf{M}_{6}^{4,1}$	94,3	$\mathbf{M}_{6}^{5,1}$	94,3	$\mathbf{M}_{6}^{6,1}$	98,07

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		49

$M_6^{2,9}=3,58$	M ₆ ^{4,9} =3,58	$M_{5}^{6,9}=3,72$
M ₆ ^{1,9} =3,72	M ₆ ^{3,9} =3,58	$M_6^{5,9}=3,58$
$M_{o}^{2,8}=14,31$	M ₆ ^{4,8} =14,31	M₀ ^{6.8} =14,87
$\mathbf{M}_{\delta}^{1,8} = 14,87$	M ₆ ^{3,8} –14,31	$M_{\delta}^{5,8}=14,31$
$M_0^{2,7}=28,63$	Me ^{4,7} =28,63	M ₆ ^{6,7} =29,77
M₀¹. ⁷ =29,77	M ₀ ^{3,7} –28,63	M ₆ 5.7–28,63
$M_6^{2.6}=42,98$	M ₆ ⁴,6=42,98	M ₆ ^{6,6} =44,69
M _δ ^{1,6} =44,69	$M_6^{3,6}=42,98$	$M_6^{5,6}=42,98$
$M_6^{2.5}=57.3$	M ₆ ^{4,5} =57,3	M ₀ ^{6,5} =59,59
$M_{\delta^{1.5}}=59,59$	$M_6^{3.5}=57.3$	$M_6^{5,5}=57,3$
M ₆ ^{2,4} =71,62	M ₆ ^{4,4=} 71,62	M ₆ ^{6,4} =74,49
$M_6^{1.4}=74,49$	M ₆ ^{3,4} =71,62	M ₆ 5,4=71,62
$M_{6}^{2,3}$ 85,95	$M_{\delta}^{4,3}=85,95$	M ₆ 6,3=89,39
$M_{6}^{1,3}=89,39$	M ₆ ^{3,3} =85,95	M ₅ 5,3-85,95
$M_{\delta}^{2.2}=100,27$	M ₆ ^{4,2} =100,27	M ₀ ^{6,2} =104,28
$M_{6}^{1,2}=104,28$	M ₀ ^{3,2} =100,27	$M_{\delta}^{5,2}=100,27$
$M_{6}^{2,1}=94,3$	$M_{\delta}^{4,1}=94,3$	M ₆ ^{6,1} =98,07
$M_{\delta}^{1,1}=98,07$	M ₆ ^{3,1} =94,3	M ₆ ^{5,1} =94,3
7777 7777 . 6000	6000	7777 7777 , 6000

Рисунок 1.19 – Изгибающие моменты с 9 – 1 этаж

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		50

1.8 Расчет внутренних усилий в раме от вертикальной нагрузки

Конструктивной основой многоэтажного каркасного здания служит пространственная несущая система, состоящая из стержневых железобетонных элементов. Вертикальными и горизонтальными элементами несущей системы являются колонны и ригели соответственно. Каркасная система используется в основном для зданий административного и общественного назначения, где нужны большие неперегораживаемые помещения. В зависимости от способа восприятия внешних нагрузок каркасы могут быть: рамными, связевыми и рамно-связевыми.

При рамном каркасе все нагрузки – вертикальные и горизонтальные (ветровые) – воспринимаются рамами каркаса с жестким соединением ригелей с колоннами. В связевом каркасе горизонтальные нагрузки воспринимаются специальными вертикальными элементами – диафрагмами и ядрами жесткости, а вертикальные нагрузки – рамами каркаса, имеющими шарнирное или с частичным защемлением соединение ригелей с колоннами. При рамно-связевом каркасе вертикальные и горизонтальные нагрузки воспринимаются рамами и элементами жесткости совместно. Пространственный характер работы несущей системы обычно не проявляется, так как и вертикальные и горизонтальные нагрузки приложены одновременно ко всем плоским рамам здания, что позволяет рассчитывать каждую плоскую раму на свою нагрузку в соответствии с ее грузовой площадью.

Рассмотрим порядок расчета плоской многоэтажной рамы рамного или рамно-связевого каркаса с жесткими узлами на вертикальную нагрузку. Опыт проектирования рамных конструкций позволяет рекомендовать некоторые упрощения расчетной схемы. Так, ригели многопролетных рам с погонной жесткостью, втрое большей суммарной погонной жесткости примыкающих к узлу стоек, можно рассчитывать как неразрезные балки; стойки при этом рассчитываются на воздействие осевой силы, приложенной со случайным эксцентриситетом, и горизонтальные нагрузки. В другом случае, если суммарная погонная жесткость стоек в шесть и более раз превышает погонную жесткость ригелей, последние рассчитываются как балки, защемленные по концам, а к стойкам прикладывают моменты, равные алгебраической сумме моментов, возникающих в заделках примыкающих ригелей. Для сокращения объема вычислений допускается: применять для расчета равнопролетную схему со средней величиной пролета, если разница между пролетами составляет не более 10 %; заменять многопролетную раму (если число пролетов более трех) трехпролетной рамой, полагая изгибающие моменты в средних пролетах многопролетной рамы такими же, как и в среднем пролете трехпролетной рамы.

Многоэтажные многопролетные рамы имеют, как правило, регулярную структуру по высоте с равными высотами этажей и одинаковой нагрузкой по ярусам (рис. 1.20, а). Узлы стоек таких рам, расположенные на одной

	OCE.	і, поворачи	ваю	гся при	мерно на равные углы поворота ϕ с нулевои точ	- Лист
	1				высоты этака (пиим в 20), в ин том отого от заме	
Изм.	лини	Ъм факульн таМ	HT0370	ЭТДЬЖЬНО	й рамы расчетом трех одноэтажных рам с шарни	- 51

рами по концам стоек : рамы верхнего этажа, рамы среднего этажа и рамы первого этажа (рис. 1.20, δ).

Опорные моменты ригелей рамы среднего этажа в этом случае определяются по формулам

$$M = \alpha \cdot g \cdot l_b^2$$
 или $M = \beta \cdot \upsilon \cdot l_b^2$, (1.24)

где α и β – коэффициенты для различных схем загружения ригеля;

g и υ — соответственно постоянная и временная (полезная) равномерно распределенная нагрузка на ригель рамы;

 l_b – расчетный пролет ригеля.

Для определения коэффициентов α и β необходимо предварительно вычислить отношение погонных жесткостей ригеля и колонны:

$$k = i_b / i_c, \tag{1.25}$$

где $i_b = B_b/l_b\,$ и $i_{\rm c} = B_{\rm c}/l_{\rm c}$ - погонные жесткости ригеля и стойки.

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм	. Лист.	№ документа	Подп.	Дата.		52

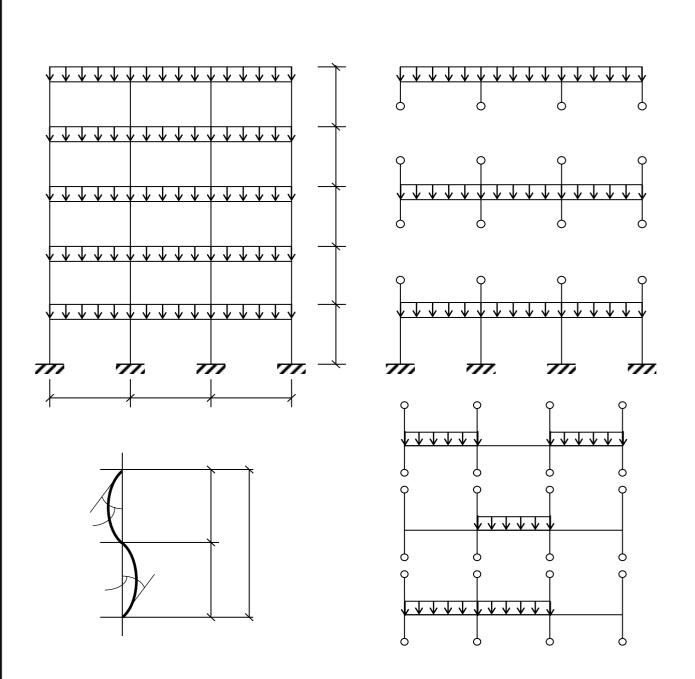
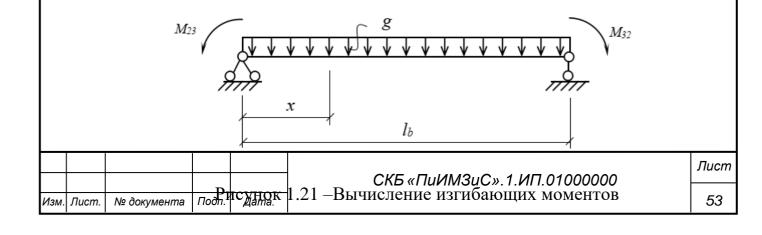



Рисунок 1.20 – Расчет рамы на верикальную нагрузку

Изгибающие моменты в пролетных сечениях ригеля определяются как в шарнирно опертой балке, загруженной известными опорными моментами по концам и нагрузкой, действующей в пролете. Схема нагрузок, например, для второго пролета показана на рис. 1.21.

В этом случае для любого сечения x

$$M_x = M_{23} + \frac{M_{32} - M_{23}}{l_b} \cdot x + \frac{g \cdot x \cdot (l_b - x)}{2}.$$
 (1.26)

При этом, если распределенная нагрузка в данном пролете отсутствует, то ее значение в формуле (1.22) принимается равным 0. Здесь отрицательные опорные моменты берутся со знаком «минус».

Величину x, для которой изгибающий момент M будет максимальным, найдем следующим образом:

$$\frac{dM(x)}{dx} = \frac{M_{32} - M_{23}}{l_b} + \frac{g \cdot l_b}{2} - g \cdot x = 0.$$

(1.27)

Отсюда
$$x = \left(\frac{M_{32} - M_{23}}{l_b} + \frac{g \cdot l_b}{2}\right) \cdot \frac{1}{g}.$$

(1.28)

Учитывая, что $\frac{dM(x)}{dx} = Q(x)$, с помощью выражения (1.23) будем определять значения поперечных сил в сечениях ригеля.

Усилия в ригеле определяются от совместного действия постоянной и временной нагрузок [5]. Постоянная нагрузка g считается равномерно распределенной по всем пролетам ригеля (схема 1) (см. рис. 1.20, ε). Для временной нагрузки υ принимаются поочередно несколько схем загружения: загружение через пролет (схема 2), загружение среднего пролета (схема 3) и загружение двух смежных пролетов (схема 4). Каждое сочетание загружений (1+2, 1+3, 1+4) вызывает свое распределение усилий и может получиться, что в опорном сечении максимальный момент будет от одного сочетания, а в пролетном — от другого. Поскольку при назначении армирования важно знать наибольшие усилия во всех сечениях, независимо от того, какие нагрузки их вызывают, необходимо построить огибающую эпюру изгибающих моментов, показывающую значения максимальных моментов по длине ригеля.

Требуется определить усилия в ригеле здания с полным каркасом и выполнить его армирование.

Ригель рассматривается как элемент рамной конструкции (рис. 1.22, a).

Расчетный пролет ригеля l_b принимается равным расстоянию между осями колонн; где l – расстояние между разбивочными осями;

В данном исследовании здание с полным каркасом и $l_b = 6$ м. (1.29)

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		54

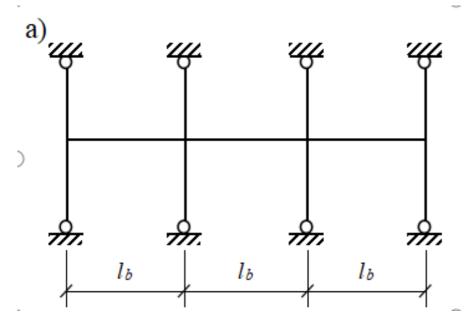


Рис. 1.22. Расчетная схема рамы с полным каркасом

Принимаем ригель прямоугольного сечения с размерами $h_b=0.6$ м и $b_b=0.25$ м. Выбираем колонну квадратного сечения $h_c\times b_c=0.4\times0.4$ м высотой $l_c=4.2$ м (по заданию). Вычисляем отношение погонных жесткостей ригеля и колонны по формуле (1.25)

$$k = \frac{E_b \cdot b_b \cdot h_b^3 \cdot l_c}{E_c \cdot b_c \cdot h_c^3 \cdot l_b} = \frac{0.25 \cdot 0.6^3 \cdot 4.2}{0.5 \cdot 0.5^3 \cdot 7} = 0.5184.$$

Здесь $E_b=E_c$, так как ригель и колонна проектируются из бетона одного класса.

Постоянная нагрузка на ригель складывается из постоянной нагрузки от веса монолитной плиты и пола $g_{pan}=4.154~{\rm kH/m}^2$ и собственного веса ригеля рамы. Нагрузка от перекрытия считается равномерно распределенной, . Для определения погонной нагрузки на $1~{\rm m}$ длины ригеля рамы следует значение g_{pan} умножить на ширину грузовой полосы, равную шагу поперечных рам $l_{pan}=6.0~{\rm m}$. Тогда погонная нагрузка на ригель

$$g_{b,pan} = g_{pan} \cdot l_{pan} \cdot \gamma_n = 4.154 \cdot 6 \cdot 1 = 24.924 \text{ KH/M},$$

от собственного веса ригеля

$$g_{b,b} = h_b \cdot b_b \cdot \rho \cdot \gamma_t \cdot \gamma_n = 0.6 \cdot 0.25 \cdot 25 \cdot 1.1 \cdot 1 = 4.125$$
 кН/м,

где $\rho = 25 \text{ кH/м}^3 -$ плотность железобетона;

 $\gamma_t = 1.1 -$ коэффициент надежности по нагрузке.

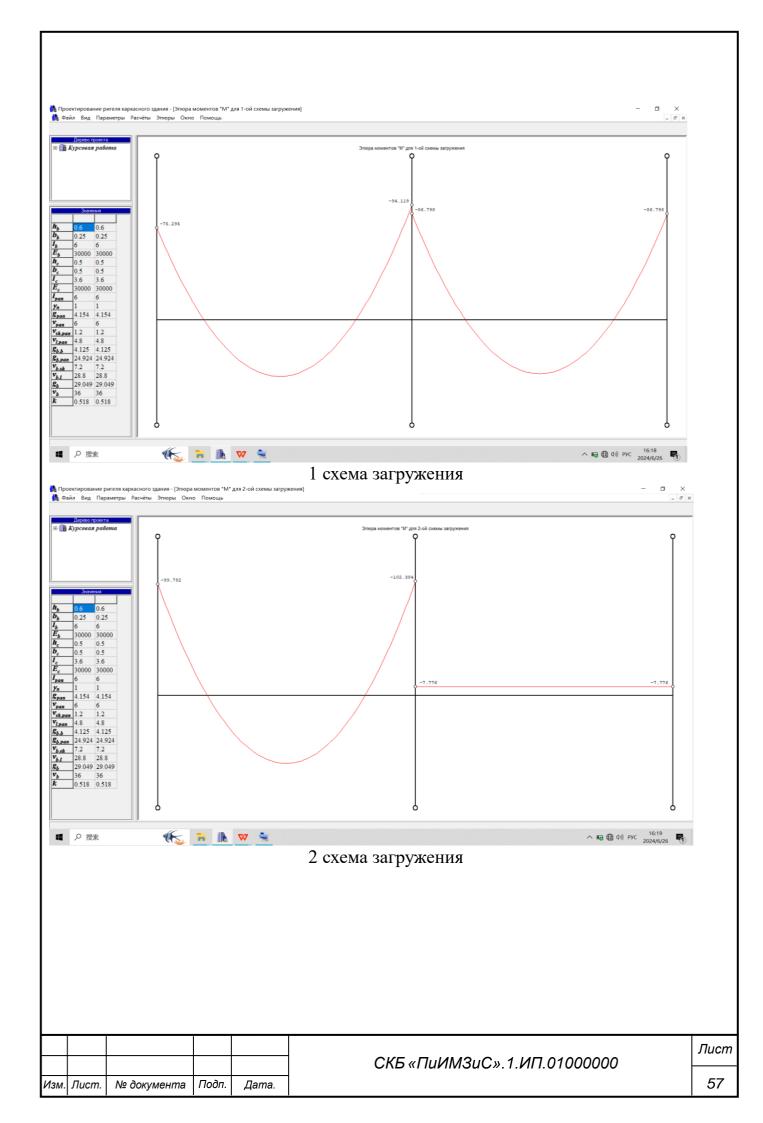
Суммарная постоянная нагрузка на 1 м длины ригеля

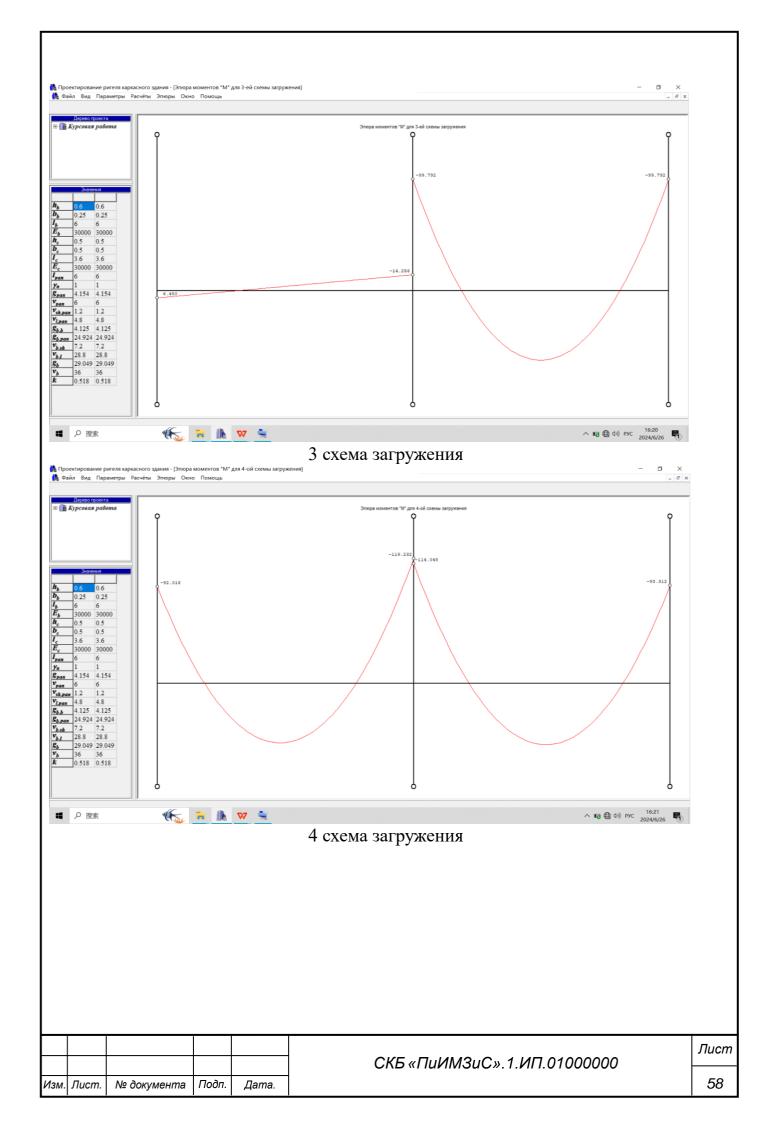
			g	$g_b = g_{b,pan} + g_{b,b} = 24.924 + 4.125 = 29.094 \text{ kH/m}.$	
		Времен	10a (1	то посотная насыузка на башку вами	Лист
1		Бремені	1ая (1	толезная) погонна я касрузыя на балкий. Эч 6 00000	
Изм.	Лист.	№ документа	Подп.	$\Delta ama_b = \upsilon_{pan} \cdot l_{pan} \cdot \gamma_n = 6 \cdot 6 \cdot 1 = 36 \text{ кH/м},$	55

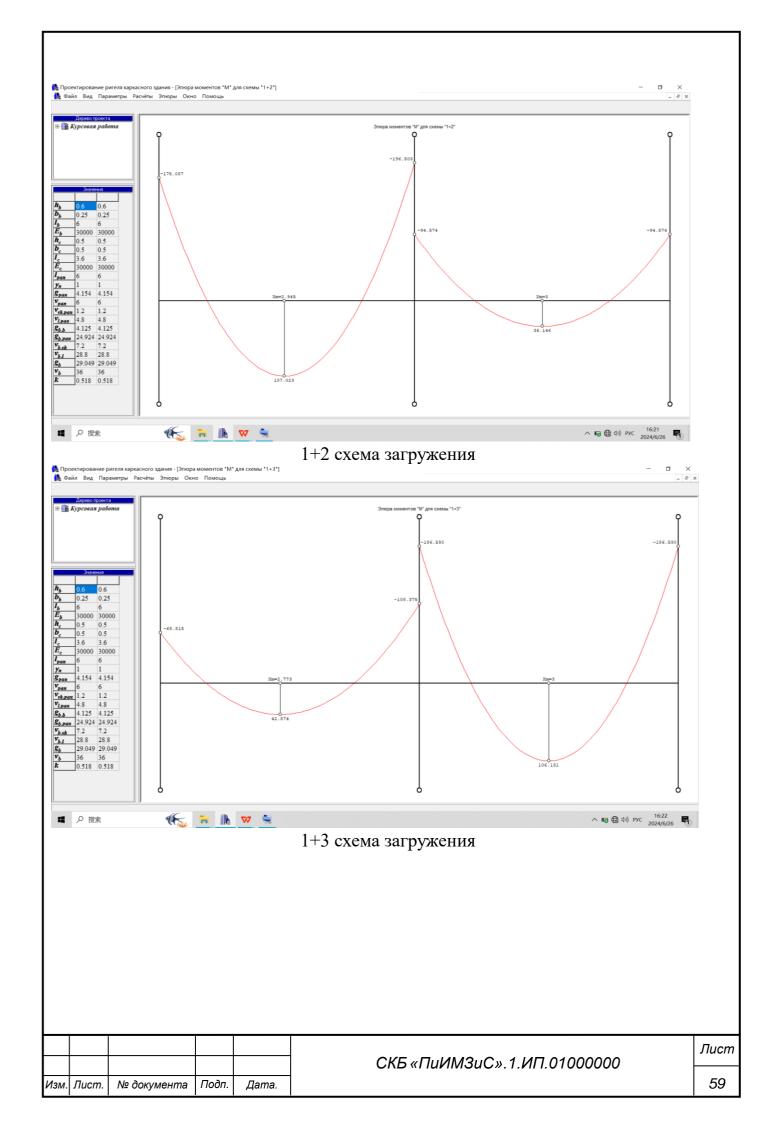
в том числе временная длительная

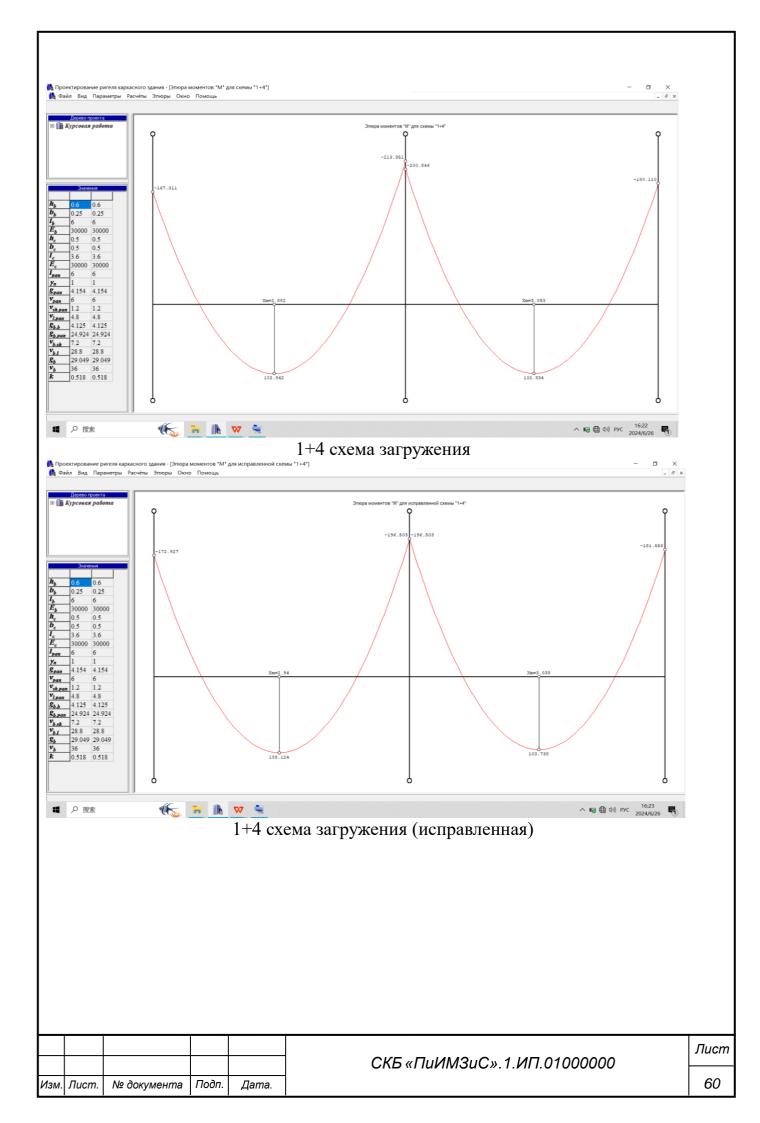
$$\upsilon_{b,l} = \upsilon_{pan,l} \cdot l_{pan} \cdot \gamma_n = 4.8 \cdot 6 \cdot 1 = 28.8 \text{ kH/m},$$

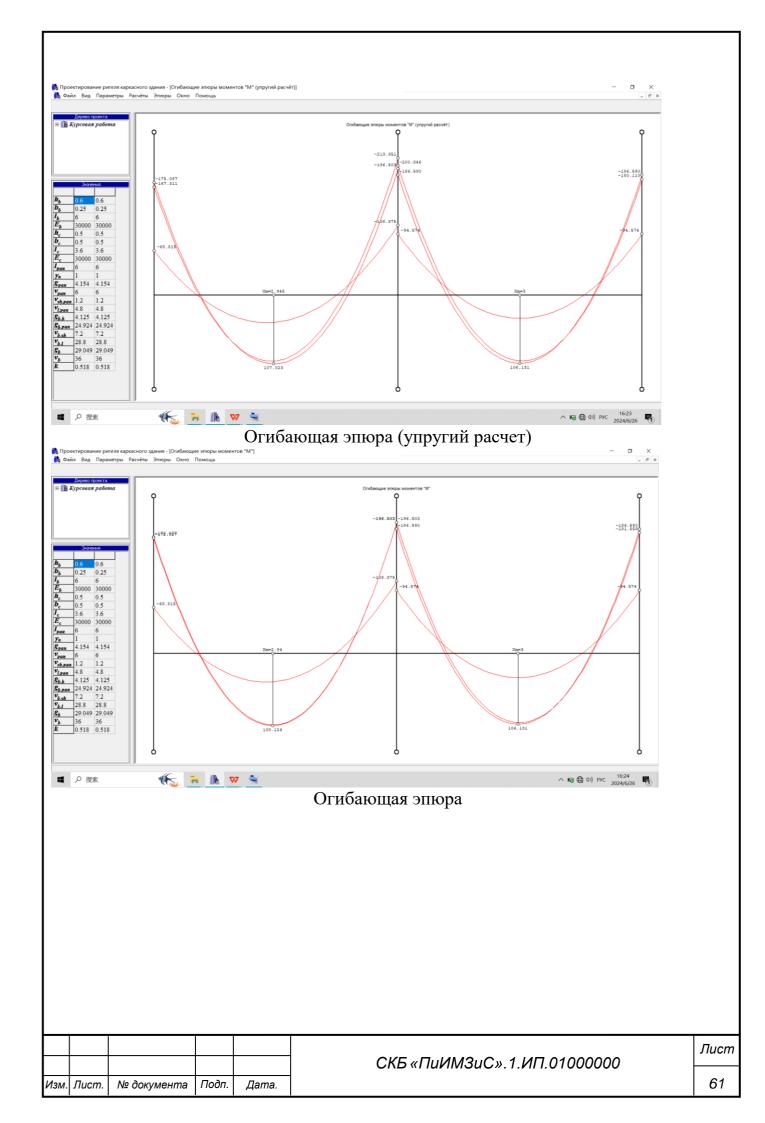
и временная кратковременная

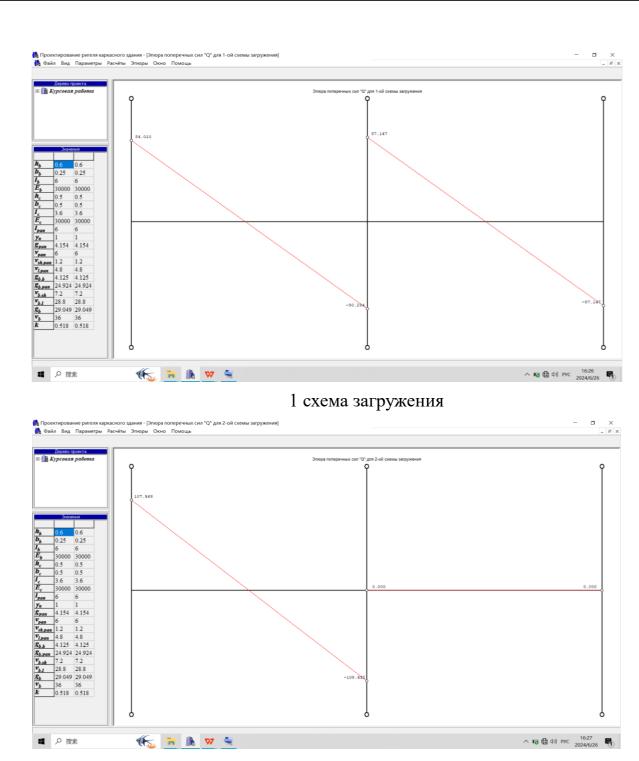

$$\upsilon_{b,sh} = \upsilon_{pan,sh} \cdot l_{pan} \cdot \gamma_n = 1.2 \cdot 6 \cdot 1 = 7.2 \text{ kH/m}.$$

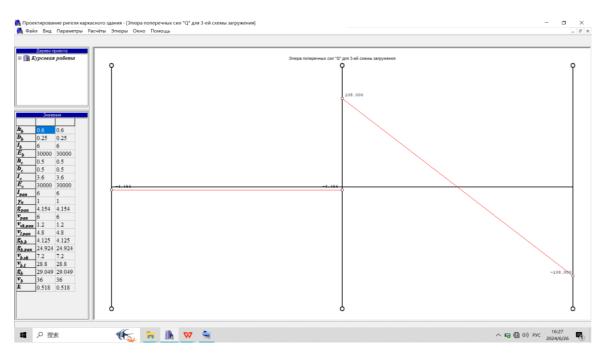

1.9 Определение внутренних усилий в сечениях ригеля

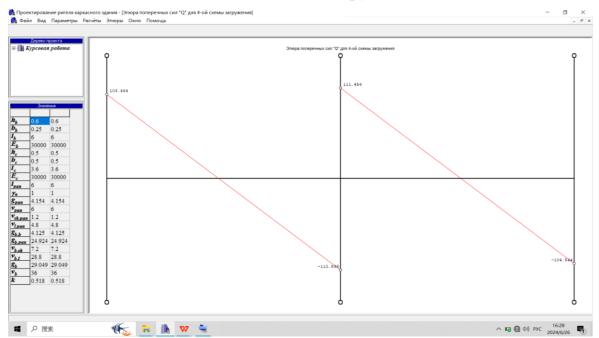

Обозначение изгибающих моментов принимаем согласно рис. 1.5.


Усилия определяем для первого и второго пролетов. В дальнейшем армирование третьего пролета принимается таким же, как и первого. Опорные моменты определяются по формулам (1.22) в зависимости от вида загружения и параметра k с использованием линейной интерполяции. Значения пролетных моментов вычисляем по формуле (1.24). При этом максимальные моменты в пролетах M_I и M_{II} определяются путем подстановки в (1.24) значений x из выражения (1.26). Поперечные силы по длине ригеля находим по формуле (1.25). Далее строим поочередно эпюры M и Q от 1-й, 2-й, 3-й и 4-й схем загружения, а затем от сочетания этих загружений — 1+2, 1+3 и 1+4.


						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изи	. Лист.	№ документа	Подп.	Дата.		56

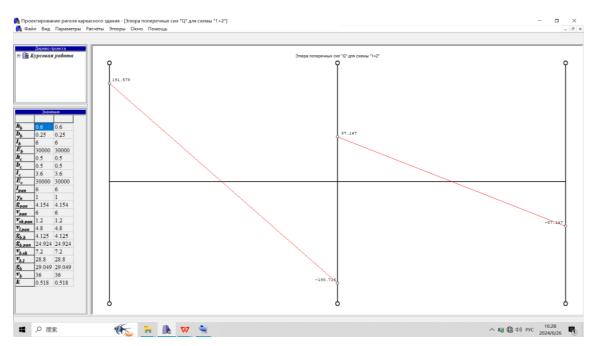




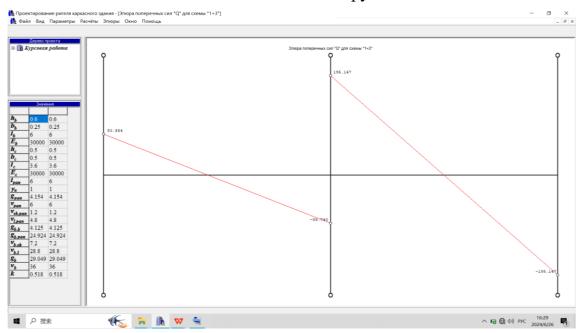


2 схема загружения

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		62

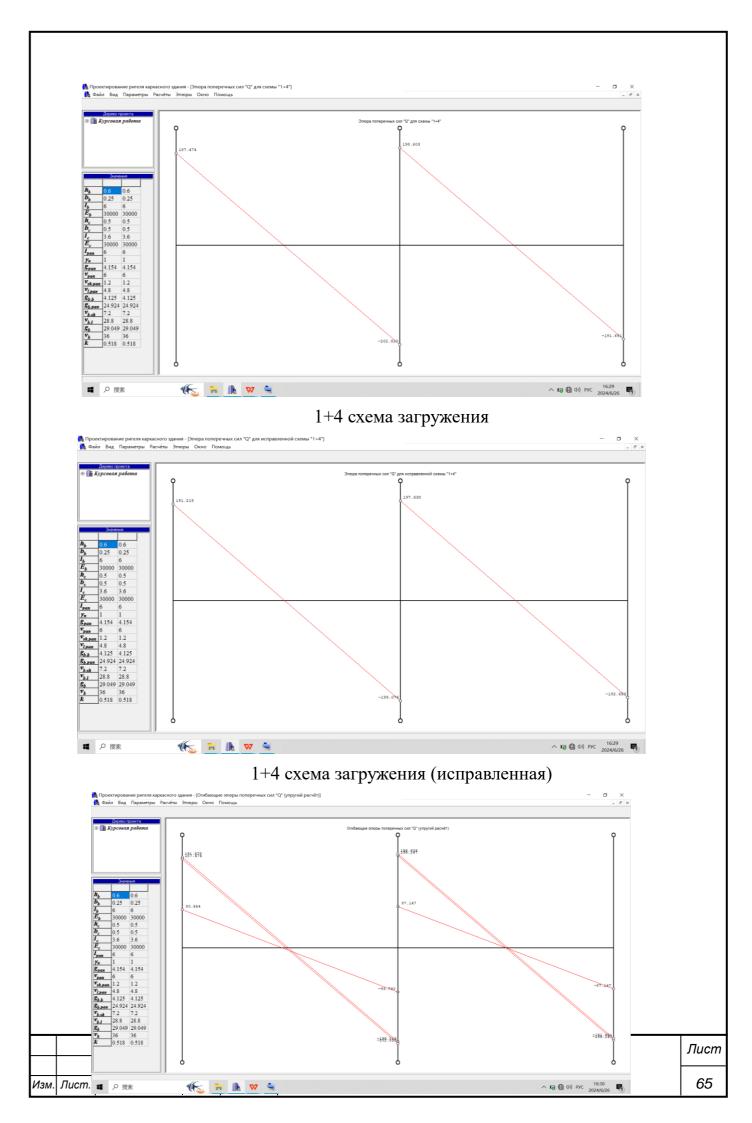


3 схема загружения

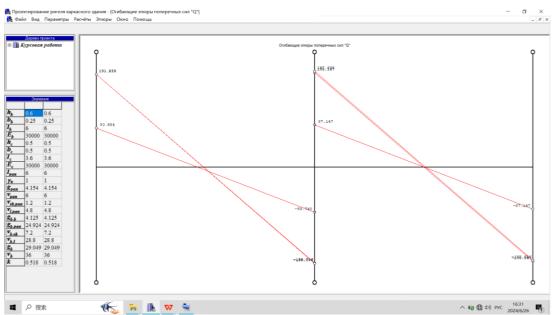


4 схема загружения

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		63



1+2 схема загружения



1+3 схема загружения

					OVE 5-14MOVO 4 145 04000000	Лист
14014	Пиот	No downsoums	Подп.	Пото	СКБ «ПиИМЗиС».1.ИП.01000000	64
изм.	Лист.	№ документа	1 100П.	Дата.		04

Огибающая эпюра (упругий расчет)

Огибающая эпюра

1/12/14	Лист.	№ документа	Подп	Дата.
VISIVI.	Tiuciii.	№ ООКУМЕНПА	110011.	дана.

2.Определение рационального армирования ригеля монолитной рамы

Современные расчетные САПР-системы позволяют выполнять полный технологический цикл расчетов строительных конструкций. Двадцать назад с помощью расчетных комплексов выполнялся только статический расчет — определялись усилия в элементах, а задачи прочностного расчета решались отдельно. Сейчас пользователь может сразу задать исходные данные, необходимые как для выполнения статического расчета, так и конструктивного.

Стандартный алгоритм статического расчета конструкций в ПК «Лира-САПР» следующий:

- 1. Выбор признака схемы (типа расчетной схемы в зависимости от числа степеней свободы в узлах КЭ).
 - 2. Создание геометрической схемы.
- 3. Задание граничных условий (исключение степеней свободы в отдельных узлах).
 - 4. Задание шарниров (при необходимости).
 - 5. Задание и присваивание жесткостей отдельным КЭ.
 - 6. Задание отдельных загружений.
 - 7. Задание таблицы РСУ или таблицы РСН.
 - 8. Статический расчет.
 - 9. Анализ полученных результатов.

Программа исследований включала в себя расчет усилий, анализ особенностей армирования ригелей рам различной этажности при совместном действии всех нагрузок (рис.2.1).

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		67

Расчет ветровой нагрузки выполнялся в соответствии с основными положениями свода правил «Нагрузки и воздействия». Основную ветровую нагрузку, действующую на здание, определяли как сумму средней составляющей и пульсационной составляющей. Для 25-ти этажного здания эквивалентная высота z_e определялась из условия h > 2d ,а для 9-ти этажного здания из условия $d < h \le 2d$. При вычислении пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_e учитывали коэффициент пульсации давления ветра $\zeta(z_e)$ в зависимости от эквивалентной высоты z_e и коэффициент пространственной корреляции пульсаций давления ветра v. Для 25-ти этажного здания пульсационная составляющая определялась с учетом коэффициента динамичности ξ , так как первая частота собственных колебаний была меньше предельного значения частоты собственных колебаний. Для 9-ти этажного здания первая частота собственных колебаний превышала предельное значение частоты собственных колебаний, поэтому коэффициент динамичности ξ при вычислении пульсационной составляющей для этого здания не учитывался. По найденным значениям средней составляющей и пульсационной составляющей определяли основную ветровую нагрузку.

Усилия в элементах рамы от ветровой нагрузки также определяли приближенным методом, изложенным в , в следующем порядке: распределенную ветровую нагрузку приводили к узловой по соответствующим грузовым площадям, далее определяли ярусные поперечные силы и поперечные силы в колоннах яруса, распределяя ярусную поперечную силу между колоннами яруса в соответствии с соотношением изгибных жесткостей. Затем находили моменты в колоннах, полагая нулевую точку моментов расположенной в середине высоты этажа и изгибающие моменты в ригелях из условия равновесия узлов.

Для анализа армирования выполняли расчет второго яруса рам. Рассматривались три опорных сечения и два пролетных[1,4]. Для опорных сечений вычислялись моменты по граням колонн (рис.2.1). На рис.2 и 3 приведены расчетные эпюры изгибающих моментов для второго этажа 9-ти и 25-ти этажных рам. Позициями а и б обозначены эпюры моментов при действии ветровой нагрузки справа налево и слева направо. Позиция в показывает ординаты огибающей эпюры от вертикальных нагрузок. При проектировании каркасов необходимо учитывать сочетания усилий от действия постоянных, вертикальных временных и ветровых нагрузок. На рис.2.г и 3.г. приведены такие сочетания для рам разной этажности.

Изм.	Лист.	№ документа	Подп.	Дата.	

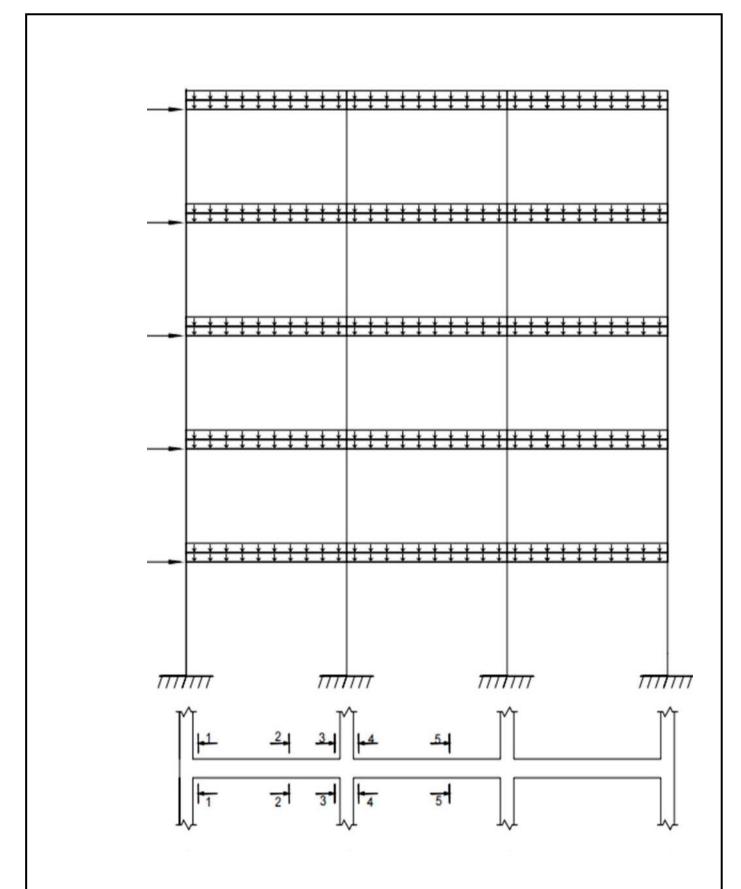


Рис.2.1. Нагрузки, действующие на поперечную раму и расчетные сечения ригеля.

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		69

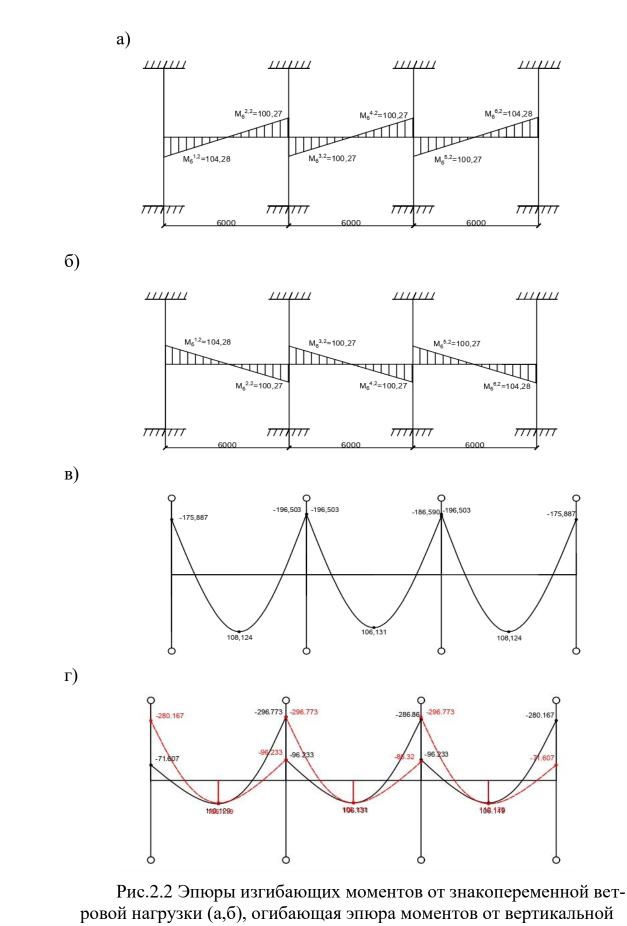


Рис.2.2 Эпюры изгибающих моментов от знакопеременной ветровой нагрузки (а,б), огибающая эпюра моментов от вертикальной нагрузки(в) и суммарная эпюра сочетаний моментов от горизонтальных и вертикальных нагрузок(г) для 9-ти этажной рамы.

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		70

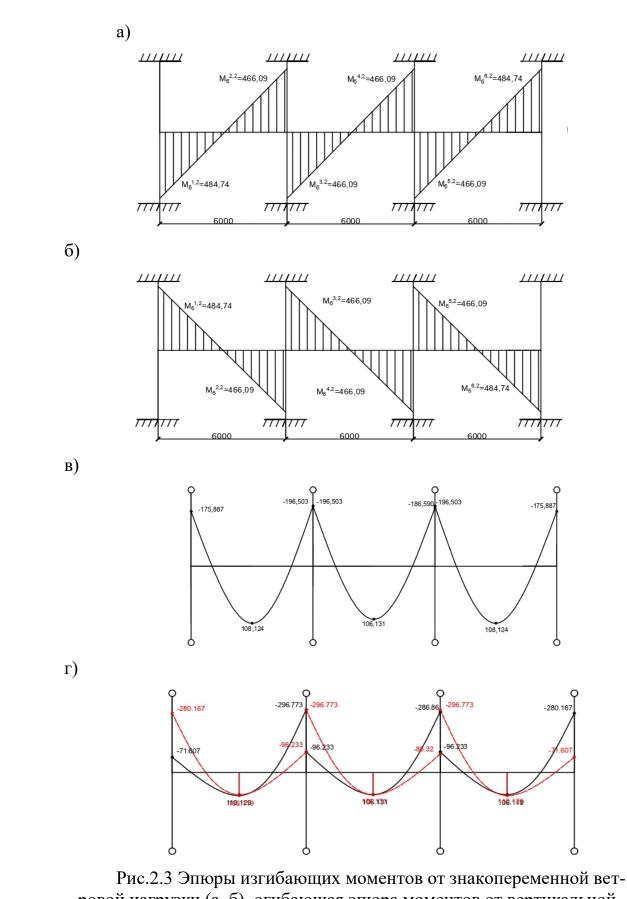


Рис.2.3 Эпюры изгибающих моментов от знакопеременной ветровой нагрузки (а, б), огибающая эпюра моментов от вертикальной нагрузки (в) и суммарная эпюра сочетаний моментов от горизонтальных и вертикальных нагрузок (г) для 25-ти этажной рамы

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		71

Анализ суммарной эпюры сочетаний моментов от горизонтальных и вертикальных нагрузок (рис.2.2.г) для 9-ти этажной рамы позволяет сделать вывод, что в этом случае сохраняется обычное традиционное армирование ригеля рамы с рабочей арматурой в нижних волокнах пролетных сечений и верхних волокнах опорных сечений (рис.2.4.а). При этом за счет знакопеременной ветровой нагрузки опорные моменты в верхних волокнах несколько увеличиваются, а моменты в нижних волокнах остаются прежними.

Особенность сочетания усилий в высотном здании заключается в том, что моменты от горизонтальной нагрузки доминируют над моментами от вертикальной нагрузки. Рассмотрим суммарную эпюру сочетаний моментов для 25-ти этажной рамы при совместном действии знакопеременной ветровой и вертикальной постоянной и временной нагрузок. Моменты в расчетных сечениях ригеля исследуемого второго яруса от действия ветровой нагрузки более чем вдвое превышают моменты от вертикальной нагрузки и существенно влияют на армирование. В итоге для 25-ти этажной рамы имеем мощное армирование верхних волокон опорных сечений. Кроме этого, появляется потребность установить рабочую арматуру в нижних волокнах опорных сечений, растянутых от действия ветровой нагрузки. Нижние волокна опорных сечений будут испытывать существенное растяжение в сравнении с нижними волокнами пролетной части ригеля. В середине пролета в нижних волокнах момент от ветровой нагрузки минимален, поэтому здесь сохраняется обычное армирование растянутой зоны (рис2.4.б).

Изм.	Лист.	№ документа	Подп.	Дата.

a) 1 пролет 2 Ø 32A400 2 Ø 32A400 4 Ø 16A400 2 пролет 2Ø32A400 2 Ø 32A400 4 Ø 16A400 б) _{Ø 36A500} 1 пролет 4 Ø 36A500 2 Ø 20A500 4 Ø 20A500 4 Ø 22A500 2 пролет 4 Ø 36A500 4 Ø 36A500 4 Ø 20A500 4 Ø 20A500 2 Ø 20A500 Рис.2.4 Армирование двух пролетов ригеля второго яруса а) для монолитной рамы 9-ти этажного здания; б) для монолитной рамы 25-ти этажного здания; Лист СКБ «ПиИМЗиС».1.ИП.01000000 73 Изм. Лист. Подп. Дата. № документа

Заключение

В данной работе произведён расчёт многоэтажных рам на ветровые и вертикальные нагрузки. На ветровые нагрузки рассчитывались рамы, а на вертикальные нагрузки рассчитывалась рама отдельного этажа, так как нагрузки вертикальные на все этажи одинаковые.

Расчёт производился для зданий следующей этажности-25 и 9 этажей. Для каждого здания были построены огибающие эпюры моментов, то есть к эпюре моментов от ветровой нагрузки соединялась эпюра моментов от вертикальной нагрузки и получались огибающие пюры, то есть, огибающие эпюры - это максимальные значения моментов во всех сечениях.

Анализ суммарной эпюры сочетаний моментов от горизонтальных и вертикальных нагрузок для 9-ти этажной рамы позволяет сделать вывод, что в этом случае сохраняется обычное традиционное армирование ригеля рамы с рабочей арматурой в нижних волокнах пролетных сечений и верхних волокнах опорных сечений. При этом за счет знакопеременной ветровой нагрузки опорные моменты в верхних волокнах несколько увеличиваются, а моменты в нижних волокнах остаются прежними.

Особенность сочетания усилий в высотном здании заключается в том, что моменты от горизонтальной нагрузки доминируют над моментами от вертикальной нагрузки. Рассмотрим суммарную эпюру сочетаний моментов для 25-ти этажной рамы при совместном действии знакопеременной ветровой и вертикальной постоянной и временной нагрузок. Моменты в расчетных сечениях ригеля исследуемого второго яруса от действия ветровой нагрузки более чем вдвое пре-

						Лист
					СКБ «ПиИМЗиС».1.ИП.01000000	
Изм.	Лист.	№ документа	Подп.	Дата.		74

вышают моменты от вертикальной нагрузки и существенно влияют на армирование. В итоге для 25-ти этажной рамы имеем мощное армирование верхних волокон опорных сечений. Кроме этого, появляется потребность установить рабочую арматуру в нижних волокнах опорных сечений, растянутых от действия ветровой нагрузки. Нижние волокна опорных сечений будут испытывать существенное растяжение в сравнении с нижними волокнами пролетной части ригеля. В середине пролета в нижних волокнах момент от ветровой нагрузки минимален, поэтому здесь сохраняется обычное армирование растянутой зоны.

Изм.	Лист.	№ документа	Подп.	Дата.

Список использованных источников

- 1. Карпенко, Н. И. Общие модели механики железобетона / Н. И. Карпенко. М.: Стройиздат, 1996. 416 с.
- 2. Шуллер, В. Конструкции высотных зданий / Стройиздат, 1979. 248 с.
- 3. СП 20.13330.2016. Нагрузки и воздействия: свод правил: издание официальное: ЦНИИСК им. В. А. Кучеренко, АО «НИЦ Строительство» Москва: Стандартинформ, 2018. 72 с.
- 4. СП 63.13330.2018. Бетонные и железобетонные конструкции. Основные положения: свод правил: издание официальное: разработан АО «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева: внесен Техническим комитетом по стандартизации ТК 465 «Строительство»: дата введения 2019-06-20: актуализированная редакция СНиП 52-01−2003 / утвержден приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 19 декабря 2018 г. № 832/пр. Москва: Стандартинформ, 2019. 118 с.
- 5. Дзюба, В. А. Расчет сборных железобетонных конструкций многоэтажного каркасного здания: учебное пособие / В. А. Дзюба. – Комсомольскна-Амуре: ФГБОУ ВО «КнАГУ», 2019. – 123 с.
- 6. Байков В.Н. Железобетонные конструкции. Общий курс / В.Н. Байков, Э.Е. Сигалов. М.: Стройиздат, 1991. 768 с.
- 7..Дроздов П.Ф. Проектирование и расчет многоэтажных гражданских зданий и их элементов/ П.Ф. Дроздов, М.И.Додонов, Л.Л.Паньшин, Р.Л.Саруханян // Издательство М.:Стройиздат. 1986.— С. 351.
- 8.Кодыш Э.Н. Проектирование многоэтажных зданий с железобетонным каркасом/ Э.Н.Кодыш, Н.Н.Трекин, И.К.Никитин // М.: Издательство Ассоциации строительных вузов. 2009.– С. 352.

_							
							Лист
						СКБ «ПиИМЗиС».1.ИП.01000000	
V	1зм.	Лист.	№ документа	Подп.	Дата.		76

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет» УТВЕРЖДАЮ

СОГЛАСОВАНО		УТВЕРЖДАЮ	
Начальник отдела ОНиПК	CPC	И.о пререкуора по научной	
/		работе	
Бил Е.М. Димитри	нади	А.В. Космын	INH
(побпись) «22» OS 20de	r.	(повись) («24°); О5 2025	г.
		BELLEVILLE A.B. Koss	
Декан факультета кадастр	аи		
строительства			
Н.В. Грин	нкруг		
и 22 05 2028 1	AKT		
о приемке проекта СКБ «	Проектирование	и информационное моделиров	вание
о приемке проекта стер «	зданий и соору	жений»	
D	спузки на апмиро	вание ригеля монолитной рам	ы»
		«27»0521	0251.
г. Комсомольск-на-Амуре			SPECIAL
Комиссия в составе	представителей:		
со стороны заказчика	as compensations	man automorphism and a second	
 Е.В. Журавлева – р 	уководитель СКЕ	o,	
- Н.В. Гринкруг – дек	ана ФКС		
со стороны исполнителя			
- <i>В.А. Дзюба</i> – руков	одителя проекта, $2\pi C_{\rm M}/I$		
– Дун Гоцай – груг	$ma \ 3\Pi C_{M-1}$		
 А.А. Ширяева – гру составила акт о нижес 	nna menviolitem.		
Составила акт о ниже	ерелает проект	«Влияние ветровой нагруз	ки на
армирование ригеля моно	олитной рамы», в	составе:	
1. Пояснительная за	аписка		
Руководитель проекта	68	В.А. Дзюба	
Туповодити	в (подрись, да		
Исполнители проекта	Aler	А.А. Ширяева	
	(подпись, дата) Дун Гоцай	Дун Гоцай	
	(подпись, дата)		