Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

СКБ «Компьютерные и инженерные технологии»

СОГЛАСОВАНО	УТВЕРЖДАЮ
Начальник отдела ОНиПКРС (подпись) ———————————————————————————————————	Проректор по научной работе А.В. Космынин (побысь) 20 <u>24</u> г.
Декан ФАМТO.А. Красильникова « 25 » _ OS _ 2024 г.	

<u>Трехмерное моделирование и изготовление макета фрагмента конструкции</u> днищевого перекрытия судна.

Комплект проектной документации

Руководитель СКБ «КИТ» Свиридов (подпись, дата)

Руководитель проекта

— 19.05.2024 А.В. Свиридов (подпись, дата)

И.В. Каменских (подпись, дата)

Карточка проекта

	Трехмерное моделирование и изготовление макета	
Название	фрагмента конструкции днищевого перекрытия	
	судна.	
Тип проекта	Техническое творчество (инициативный)	
Вид результата	Трехмерная модель объекта, методология	
(НТП)	моделирования корабельных конструкций.	
	Расчет и моделирование макетов корабельных узлов	
Назначение	и конструкций с целью разработки концепции	
Пазначение	использования аддитивных технологий в	
	инженерной деятельности.	
	В учебном процессе для направления подготовки	
Область	26.03.02 и 26.04.02 «Кораблестроение, океанотехника	
	и системотехника морской инфраструктуры» в	
использования	качестве наглядного пособия учебно-методического	
	комплекса	
Исполнители	Студент Лю Вэньмин – 3КСм-1	
Срок реализации	ноябрь, 2023 – май, 2024	

Использованные информационно-технические ресурсы

Наименование	Количество, шт.
Программный комплекс «Компас-3D»	1
Трехмерный принтер (FDM-печать)	1
Пластиковая нить	1кг

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

СКБ «Компьютерные и инженерные технологии»

ЗАДАНИЕ на разработку

Выдано студенту Лю Вэньмин, гр. 3КСм-1.
Название проекта: Трехмерное моделирование и изготовление макета фраг-
мента конструкции днищевого перекрытия судна.
Назначение: Исследование особенностей днищевой конструкции суд-
на
Область использования: В учебном процессе для направления подготовки
26.03.02 и 26.04.02 «Кораблестроение, океанотехника и системотехника мор-
ской инфраструктуры» в качестве наглядного пособия и учебного задания.
Функциональное описание проекта: <u>3D-модель должна демонстрировать вза-</u>
имное расположение элементов конструкции с учетом проектных характери-
стик и технологии постройки судна.
Техническое описание устройства: <u>3D-модель днищевой конструкции (в рай-</u>
оне миделя) должна соответствовать габаритным характеристикам судна,
назначению и требованиям, предъявляемым к конструкциям.
Требования: <u>3D-модель выполняется в CAD-системе «КОМПАС-3D»</u> . В мо-
дели разрабатываются только элементы конструкции днищевого перекрытия
(в районе миделя). Судовые системы и устройства не разрабатываются.

План работ:

Наименование работ	Срок
Анализ проектных характеристик и основных тре-	Ноябрь, 2023
бований к днищевым конструкциям.	
Определение общей компоновки конструкции в	Декабрь, 2023
районе миделя.	
Определение параметров элементов днищевого пе-	Январь, 2024
рекрытия.	
Формирование 3D-модели фрагмента днищевого	Февраль-апрель, 2024
перекрытия. Проработка элементов конструкции.	
Выявление, анализ, и устранение ошибок связан-	
ных:	
- с геометрическими пресечениями элементов 3D-	
модели;	
- с нарушениями нормируемых расстояний между	
элементами 3D-модели;	
- с трехмерной печатью и сборкой фрагмента полу-	
ченной модели.	
Оформление отчета	Май, 2024

Комментарии:

Пояснительная записка к проекту выполняется по требованиям РД 013-2016 с изм. 4. Графический материал оформляется по требованиям судостроительного черчения

Перечень графического и иного материала:

- 3D-модель фрагмента днищевого перекрытия.
- Методические указания по моделированию

Руководитель проекта

(подпись, дата) И.В. Каменских

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ПАСПОРТ

«Трехмерное моделирование и изготовление макета фрагмента конструкции днищевого перекрытия судна»

Руководитель проекта

(подпись, дата)

И.В. Каменских

Комсомольск-на-Амуре 2024

Содержание

1.Общие положения	7
1.1 Цель и задачи работы	7
1.2 Предмет разработки	7
1.3 Исходные данные для проектирования	7
2. Теоретические сведения, область использования разработки	11
2.1 Теоретические сведения	11
2.2 Назначение и область использования разработки	12
3. Методические рекомендации по моделированию дниц	цевого
перекрытия	13
3.1 Подготовка трехмерных моделей и практические рекомендац	,ии
по моделированию в системе «Компас-3D»	13

Изм.	Лист.	№ документа	Подп.	Дата.

1 Общие положения

1.1 Цель и задачи работы.

Цель работы заключалась в моделировании трехмерной модели фрагмента конструкции днищевого перекрытия судна и описании методических рекомендаций для ее реализации.

Задачами проекта являлось создание эскизов элементов конструкции, на их основе моделирования трехмерной конструкции днищевого перекрытия; разработка методических указаний по построению эскизов элементов конструкции и получения трехмерной модели в программном комплексе «КОМПАС – 3D».

1.2 Предмет разработки.

Предметом разработки является трехмерная модель фрагмента днищевого перекрытия судна и практические рекомендации по трехмерному моделированию судовой конструкции при освоении профильных дисциплин по направлению «Кораблестроение, океанотехника системотехника объектов морской инфраструктуры» (26.03.02 и 26.04.02).

1.3 Исходные данные для проектирования.

Исходные данные проекта.

Создать трехмерную модель фрагмента днищевого перекрытия судна в программном комплексе «КОМПАС-3D», состоящего из продольных и поперечных связей, указанных на рисунках (рисунок 1, 2, 3). Выполнить моделирование без книц, заделок, подкреплений вырезов и стоек. Оценить возможность выполнения трехмерной печати тонкостенной конструкции.

Изм.	Лист.	№ документа	Подп.	Дата.

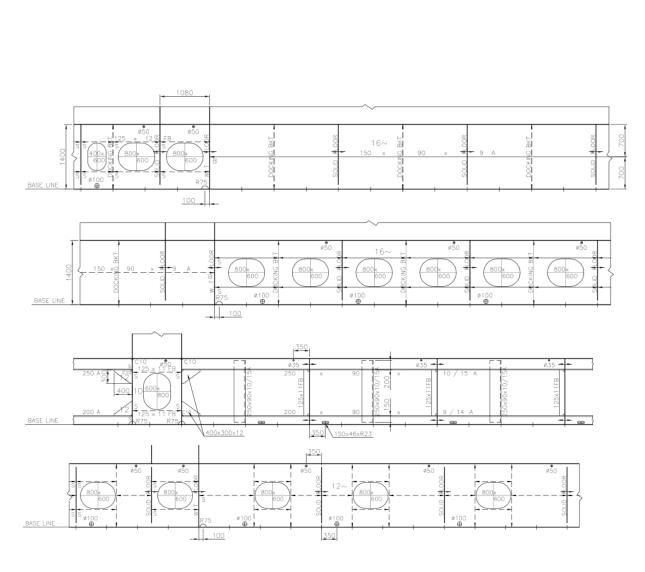


Рисунок 1 – Продольные связи

Изм.	Лист.	№ документа	Подп.	Дата.

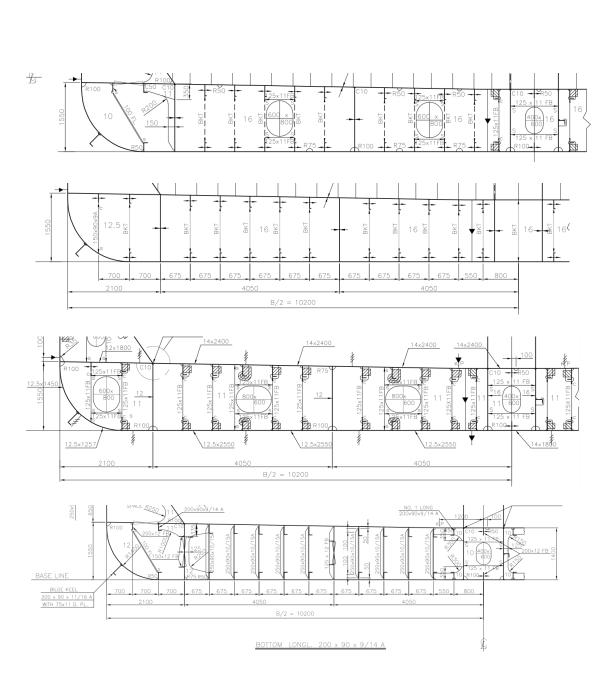


Рисунок 2 – Поперечные связи

					СКБ КИТ.10.ИП.01000000
Изм.	Лист.	№ документа	Подп.	Дата.	GRB RVII : 10.VII 1.0 1000000

Лист

9

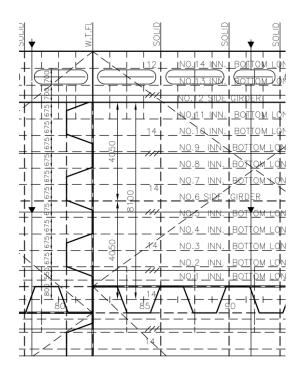


Рисунок 3 – Вид на настил двойного дна

·				
Изм.	Лист.	№ документа	Подп.	Дата.

2 Теоретические сведения, область использования разработки

2.1 Теоретические сведения.

При двойном дне над продольными и поперечными связями, расположенными на днищевых поясьях наружной обшивки, имеется еще второе водонепроницаемое дно. Двойное дно по конструкции напоминает плоскую коробчатую балку.

Поперечные связи у двойного дна состоят из флоров. Флоры расположены в двойном дне под прямым углом к диаметральной плоскости. Различают водонепроницаемые, бракетные и сплошные флоры. Водонепроницаемые флоры при высоте двойного дна более 0,9 м подкрепляются вертикальными ребрами жесткости. Сплошные флоры похожи на водонепроницаемые, в них устраивают вырезы, чтобы уменьшить их собственную массу и сделать доступными отдельные отсеки двойного дна. Скуловые бракеты, или кницы, соединяют трюмные шпангоуты с крайним междудонным листом или вторым дном, т.е. с днищевыми поперечными связями, и подкрепляют скулу.

Вертикальный киль, служит для увеличения жесткости днища между двумя переборками и для предотвращения деформации флоров. Киль проходит от кормы до носа через все судно.

В зависимости от ширины судна по обе стороны от вертикального киля расположены один, два или более интеркостельных днищевых стрингеров (интеркостельные стрингеры - в виде бракет, вставленных между флорами), которые выполняют те же задачи, то и вертикальный киль.

Для больших судов (длиной более 140 м) строят второе дно с продольными ребрами и днищевыми стрингерами, сплошные флоры располагают через 3-4 шпации. Продольная система набора повышает продольную прочность днища. Днищевое перекрытие получается намного легче, чем двойное дно с флорами на каждой шпангоуте. Между флорами у крайнего междудонного листа ставят бракеты, а у днищевых стрингеров — вертикальные ребра жесткости на расстоянии шпации; у вертикального киля в зависимости от расстояния между флорами по обе стороны дополнительно ставят одну или две бракеты с фланцами.

Днищевые ребра жесткости, которые в зависимости от размеров судна устанавливаются на расстоянии 0,7-1 м, проходят сквозь сплошные флоры.

						Лист
					СКБ КИТ.10.ИП.02000000	
Изм.	. Лист.	№ документа	Подп.	Дата.		11

При продольной системе набора со стрингерами в последних выполняют эллиптические вырезы.

2.2 Назначение и область использования разработки.

Назначение разработки состоит в ее применении в учебном процессе для направления подготовки 26.03.02 и 26.04.02 «Кораблестроение, океанотехника и системотехника морской инфраструктуры» в качестве наглядного пособия и учебного задания.

Изм.	Лист.	№ документа	Подп.	Дата.

3. Методические рекомендации по моделированию

3.1 Подготовка трехмерных моделей и практические рекомендации по моделированию в системе «Компас-3D».

В результате моделирования получена конструкция рисунок 4 и 5.

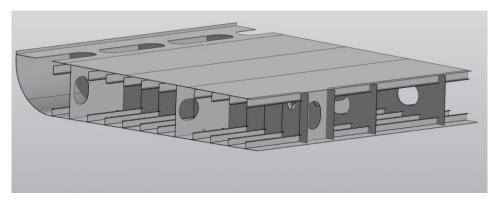


Рисунок 4 – Трехмерная модель фрагмента конструкции днищевого перекрытия

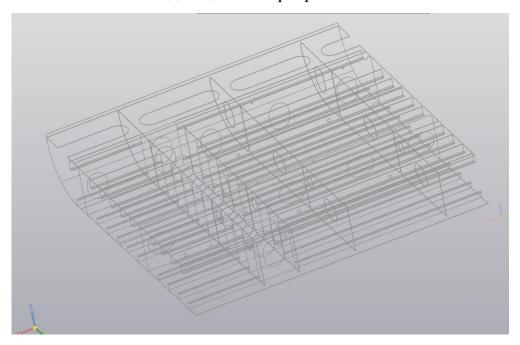


Рисунок 5 – Режим отображения Каркас

Для построения модели вначале определяют основные теоретические плоскости ОП, ДП, ШП. Относительно которых будет сформирована система теоретических плоскостей – Плаз (рисунок 6). В данных плоскостях определяются габариты будущего фрагмента днищевого перекрытия с учетом размеров показанных на рисунках 1, 2, 3.

						Лист
					СКБ КИТ.10.ИП.03000000	
Изм.	Лист.	№ документа	Подп.	Дата.		13

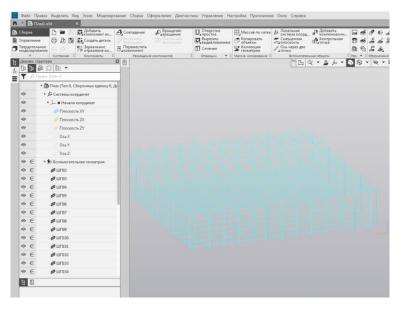
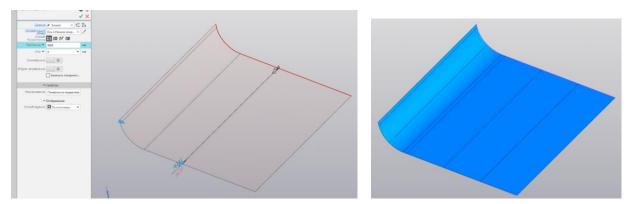


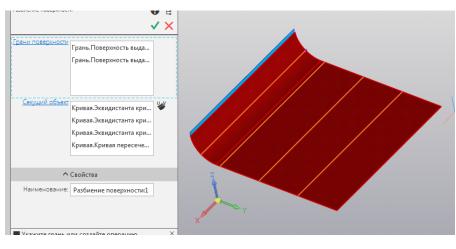
Рисунок 6 – Теоретические плоскости

В эскизе строится контур теоретического шпангоута. С помощью инструментов: Отрезок, Дуга.

Рисунок 7 – Эскиз шпангоута

Для построения поверхности наружной обшивки используем инструмент построения поверхности выдавливанием (рисунок 8).




Рисунок 8 - Поверхность выдавливанием

С помощью инструментов: Точка, Отрезок, Кривая пересечения, Эквидистанта кривой создают систему линий. По одним линиям (согласно рисункам 1, 2, 3) проводится Разбиение поверхности. В результате обшивка днища

					CVE VIAT 40 IAE 0200000	Лист
Изм.	. Лист.	№ документа	Подп.	Дата.	СКБ КИТ.10.ИП.03000000	14

разделяется на поясья листов обшивки (рисунок 9, а и б), для которых задается в далее толщина и материал. Другие линии соответствуют разметке мест установки продольного и поперечного набора днищевого перекрытия (рисунок 9, в).

a)

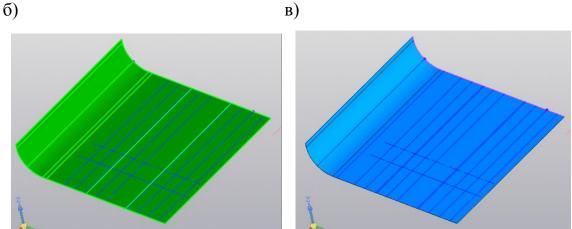
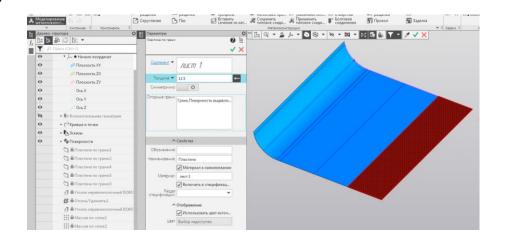



Рисунок 9 – Работа с поверхностью наружной обшивки: а – разделение на поясья; б – разметка поясьев (зеленые линии); в – разметка под набор

В режиме моделирования металлоконструкций конкретизируем чем является каждая часть построенной поверхности, операция Пластина по грани рисунок 10 (а, б). Включаем лист в спецификацию по конструкции.

Г							Лист
F						СКБ КИТ.10.ИП.03000000	Jiuciii
Из	м. Л	Пист.	№ документа	Подп.	Дата.		15

a)

б)

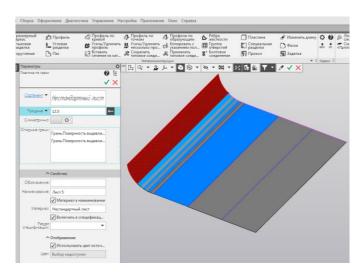


Рисунок 10 – Конкретизация листов обшивки а – стандартный лист; б – нестандартный лист

Для построения продольных балок можно использовать операцию Профиль по кривой (рисунок 11). Места установки связей уже размечены.

Изм.	Лист.	№ документа	Подп.	Дата.

CKE KUT 10	.ИП.03000000
CND NVII.IU	.VII 1.U3UUUUU

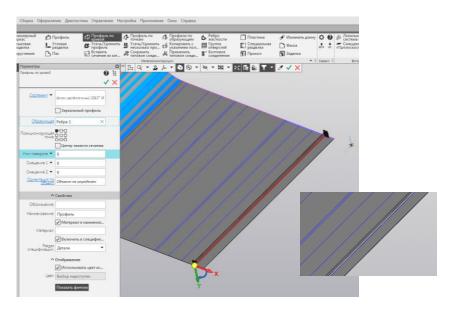


Рисунок 11 – Установка продольной балки

Обрезка профиля (команда Усечь/удлинить профиль) выполняется поперечными плоскостями (плоскости флоров).

Расстановка остального набора проводится командой Массив по сетке (рисунок 12).

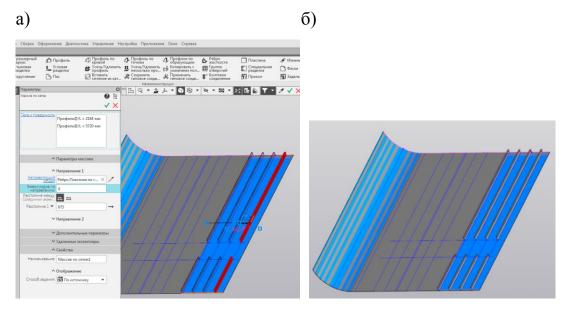


Рисунок 12 – Расстановка нескольких одинаковых балок по поверхности обшивки:

а – команда Массив по сетке; б – результат выполнения команды

Вид днищевой обшивки после установки всех продольных балок и конкретизации материала показан на рисунке 13.

						Лист
					СКБ КИТ.10.ИП.03000000	
Изм.	Лист.	№ документа	Подп.	Дата.		17

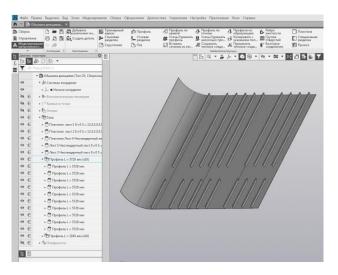


Рисунок 13 – Обшивка с набором

Флор (рисунок 14) строится по частям (рисунок 15), с использованием инструментов: Отрезок, Дуга окружности. Во флорах выполняются вырезы (с учетом размеров указанных на рисунках 1, 2, 3) см. рисунки 16-18.

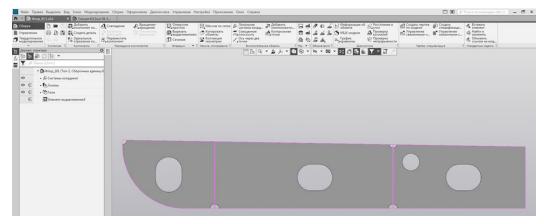


Рисунок 14 – Флор

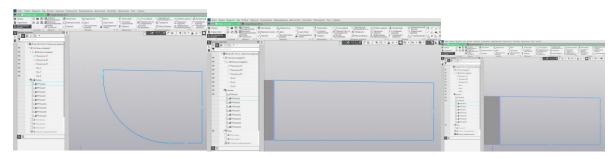


Рисунок 15 – Эскизы частей флора

						Лист
					СКБ КИТ.10.ИП.03000000	
Изм.	Лист.	№ документа	Подп.	Дата.		18

Отдельно создаются эскизы вырезов (рисунок 16), инструментами: Отрезок, Дуга. Указать привязку. Для построения использовать вспомогательные линии.

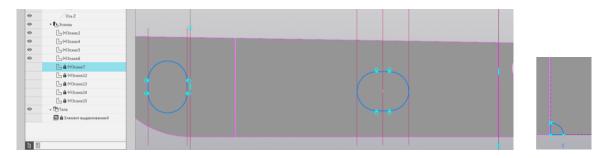


Рисунок 16 – Эскизы вырезов во флоре: а – вырезы; б - технологические вырезы для прохода

сварных швов во флоре

Указав тело и материал флора – получили листы флора. Выполнить вырезы можно с помощью инструмента Элемент выдавливания рисунок 17.

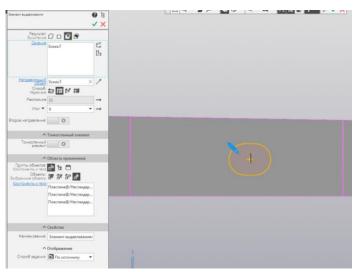


Рисунок 17 – Выполнение выреза во флоре

Используя данные технологии построения и формирования конструкций моделируются днищевые стрингеры и остальные элементы днищевой конструкции (рисунок 18).

					OKE KIAT 40 IAE 0200000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	СКБ КИТ.10.ИП.03000000	19

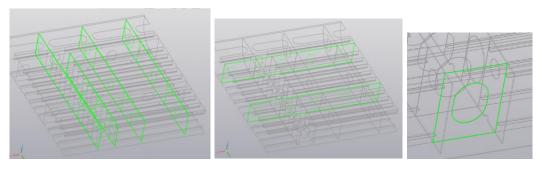


Рисунок 18 – Формируемые элементы конструкции

Используя технологии описанные для днищевой обшивки и элементов набора выполняем формирование настила второго дна с продольными балками и вырезами (рисунок 19).

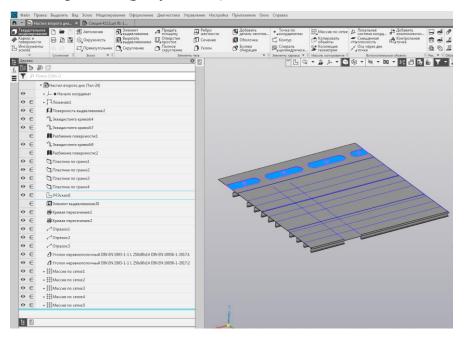


Рисунок 19 – Настил второго дна

В ходе работы были получены фрагмент трехмерной модели конструкции днищевого перекрытия, практические рекомендации по моделированию корабельной трехмерной конструкции в системе «КОМПАС-3D».

Оценка возможности печати разработанной конструкции выявила некоторые сложности для ее осуществления связанные с особенностями оборудования для печати (размер печатающей головки, области печати). Масштабирование трехмерной модели также не привело к удовлетворительным результатам печати макета конструкции.

					CKE KIAT 40 IAE 0200000	Лист
Изм.	Лист.	№ документа	Подп.	Дата.	СКБ КИТ.10.ИП.03000000	20

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

СОГЛАСОВАНО	УТВЕРЖДАЮ	
Начальник отдела ОНиПКРС ———————————————————————————————————	Проректор по научной рабо А.В. Космын (поблись) «»20	те нин г.
о приемке в экс «Трехмерное моделирование и изгот	АКТ плуатацию проекта овление макета фрагмента конструг рекрытия судна».	сциі
г. Комсомольск-на-Амуре	«19» <u>05</u> 20 <u>24</u> 1	
Комиссия в составе представителей	i:	
со стороны заказчика		

- А.В. Свиридов руководитель СКБ,
- О.А. Красильникова декан «ФАМТ»

со стороны исполнителя

- И.В. Каменских руководитель проекта,
- Лю Веньмин гр. 3КСм-1,

составила акт о нижеследующем:

«Исполнитель» передает проект «Трехмерное моделирование поверхности подводного транспортного судна в системе «Компас-3D», в составе:

- 1. Трехмерной модели
- 2. Методических рекомендаций по изготовлению подобных трехмерных моделей и сборки в программном комплексе «Компас-3D»

Руководитель проекта

18 19.05. 2024 (подпись, дата)

И.В. Каменских

Исполнитель проекта

МО ВАНЬШИ Н (подпись, дата)

205,2

Лю Веньмин