Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение Высшего профессионального образования «Комсомольский-на-Амуре государственный технический университет»

Кафедра химии и химической технологии

УТВЕРЖДАЮ

Первы	ый пр	оректор ГОУ	ВПО «КнАГТУ»
			А.Р.Куделько
	«	>>	2008 года

РАБОЧАЯ ПРОГРАММА дисциплины «ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» основной образовательной программы подготовки

дипломированных бакалавров по направлению 240100 – «Химическая технология и биотехнология»;

дипломированных специалистов по специальности 240502 — «Технология переработки пластических масс и эластомеров»;

дипломированных специалистов по специальности 240403 — «Химическая технология природных энергоносителей и углеродных материалов»

Форма обучения Очная

Технология обучения традиционная

Объем дисциплины 136 час; 4 зачетных единицы

Комсомольск-на-Амуре 2008 год

Рабочая программа обсух химической технологии».	кдена и одобрена на за	седании кафедры	«Химии и
Зав. кафедрой химии и хик.х.н., профессор	мической технологии,	B.B	.Телеш
«»	_2008 год		
Рабочая программа обсуж переработки нефти и газах	_	едании кафедры «Т	ехнология
Зав. кафедрой химии и хидд.т.н., профессор	мической технологии,	B.B	.Петров
«»	_2008 год		
СОГЛАСОВАНО:			
Начальник учебно-методи	ческого управления	А.А.Скр	оипилев
«»	_2008 год		
Декан факультета экологи к.х.н., профессор	и и химической технолог		Телеш
«»	_2008 год		
Программа рассмотрена методической комиссией о	ракультета экологии и хи		
Председатель методическо к.х.н, доцент	ои комиссии:	О.Г.Ша	акирова
« <u></u> »	2008 год		
Автор рабочей программь	I: К.Х.Н., ДОЦЕНТ	И.И.З	олотарёв

ВВЕДЕНИЕ

Опережающие темпы роста химической и родственных с ней отраслей промышленности требуют дальнейшего улучшения качества подготовки инженеров-технологов широкого профиля для предприятий, проектных и научно-исследовательских организаций на основе повышения фундаментальной подготовки специалистов по инженерно-химическому циклу учебных дисциплин. Такие же задачи подготовки кадров вытекают из современных тенденций в развитии всей промышленности, и особенно химических отраслей - интенсификация и модернизация действующих производств, укрупнение и комбинирование производств, развитие экологически чистых и безотходных производств, создание энерго- и материалосберегающих технологических схем.

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Требования государственного образовательного стандарта: Общая химическая технология: химическое производство; иерархическая процессов химическом производстве; критерии В эффективности производства; общие закономерности химических процессов; промышленный катализ; химические реакторы: основные математические модели процессов химических реакторах, изотермические неизотермические химических реакторах, процессы В промышленные химические реакторы; химико-технологические системы (ХТС): структура и описание XTC, синтез и анализ XTC, сырьевая и энергетическая подсистемы ХТС; энергия в химическом производстве; важнейшие промышленные химические производства.

1.2. Предмет, задачи и принципы построения дисциплины «Общая химическая технология»

Роль химика-технолога широкого профиля возрастает во всех отраслях народного хозяйства. В связи с этим возрастает также значение курса "Общая химическая технология", которым завершается общая химико-технологическая подготовка инженера-химика.

Настоящая программа отражает новые достижения теории и практики химических производств.

Изучение химической технологии, как бурно развивающейся прикладной науки, имеющей предмет исследования - химическое производство, цель исследования - создание высокоэффективных химико-технологических систем и основные методы исследования - физико-химическое изучение химико-технологических процессов и их математическое моделирование, опирающееся на закономерности физико-химических, тепломассообменных и аэрогидродинамических явлений, системный анализ технологических схем и взаимодействий их элементов, предусмотрено в курсах общей химической технологии и в курсах профилирующих специальностей.

В курсе "Общая химическая технология" происходит интеграция знаний,

требующая развития ассоциативного мышления и памяти, поэтому в курсе значительное место уделяется физико-химическим и технологическим аспектам анализа химических процессов, а также построение химико-технологических схем с тем, чтобы обобщающее начало преобладало над описательным для различных типов химико-технологических процессов.

В настоящей программе курса "Общая химическая технология" особое внимание уделено проблемам сырья и энергии в химической технологии, а также вопросам промышленной экологии и защиты окружающей среды.

Основные задачи курса "Общая химическая технология":

- знакомство с составом и структурой химического производства;
- изучение закономерностей химических превращений в условиях промышленного производства;
- обучение современным методам и приемам анализа, разработки и создания оптимальной организации химических и химико-технологических процессов;
- развитие инженерного химико-технологического мышления и эрудиции при анализе и синтезе химико-технологических процессов и систем;
- изучение основ экологии и защиты окружающей среды при создании XTП на примерах передовых химических производств.

Решение теоретических и прикладных проблем дисциплины основывается на анализе и использовании общих закономерностей протекающих химических превращений, осложненных процессами переноса, как, фундаментальной основы изучения химико-технологических процессов химических производств и их схем, а также изучении химического производства как системы взаиэлементов, протекающих мосвязанных потоков И В них процессов, получения необходимых технически. предназначенной ДЛЯ продуктов экономически и социально целесообразным путем.

Дисциплина "Общая химическая технология" состоит из лекционного курса», практикума, расчетных упражнений (семинаров) и общей инженерной производственной практики.

В лекционном курсе излагаются основные понятия теории химических процессов и реакторов, принципы их выбора для заданного химикотехнологического процесса, основные методы и приемы анализа, разработки и реализации эффективных химико-технологических процессов и систем, основные приемы защиты окружающей среды. На примере передовых, хорошо изученных химических производств (ХТС) демонстрируется реализация методических и теоретических положений, которые на этих примерах изучаются предметно. Эта часть курса служит также развитию инженерной эрудиции.

На семинарских занятиях прививаются навыки экспериментального и расчетного анализа химико-технологических процессов и систем и принципов их разработки с применением ЭВМ.

В задачу общеинженерной производственной практики входит ознакомление студентов - с общими принципами организации химико-технологического производства химических предприятий, общезаводским хозяйством,

взаимосвязью цехов, основным производственным оборудованием, а также с элементами экономики производства.

1.3. Роль и место дисциплины в структуре реализуемой образовательной программы

При составлении программы учитывалась взаимосвязь и преемственность курса "Общая химическая технология" и других общетеоретических, общеинженерных и специальных (профилирующих)дисциплин. Чтение курса лекций должно следовать за изучением курсов неорганической, органической, аналитической и физической химии, процессов и аппаратов химической технологии, физики, теплотехники, математики, вычислительной математики и предшествовать изучению химической технологии в курсах профилирующих специальностей.

1.4.Объем учебной работы и предусмотренные рабочими учебными планами реализуемой образовательной программы формы аттестации ее результатов

Таблица 1. Характеристика трудоемкости дисциплины «Обшая химическая технология»

Вид учебной работы	семестр	Объем			
		(в семе	учебной		
		аудитор	самостоя	всего	работы в
		ная	тельная		кредитах
1. Предусмотренный					
учебным планом					
объем изучения					
курса в учебных					
семестрах:	0	0.5.45	5.1 /O	106/0	4
- Bcero	8	85/5	51/3	136/8	4
2. По видам ауди-					
торных занятий:					
- Лекции	8	51/3	31/2	82/5	2,5
- Практические					
занятия	8	34/2	20/1	54/3	1,5
3. Аттестация по					
курсу					
-Зачет	8	-	-	-	-
-Экзамен	8	-	-	36	1
4. Итого объем					
курса по семестрам					
(записи в зачетную					
книжку): -Зачет	8	-	-	54	1,5

-Экзамен	8	-	-	82	2,5
5. Итого трудоем-					
кость дисциплины	-	_	-	172	5

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Тематический план курса

<u>Раздел 1.</u> ВВЕДЕНИЕ

Химическая технология - наука о промышленных способах и процессах переработки сырья в продукты потребления и средства производства.

Этапы развития химической технологии. Роль химической технологии в народном хозяйстве. Межотраслевое значение химической технологии. Химизация народного хозяйства.

Основные направления в развитии химической технологии - создание высокоэффективных интенсивных безотходных и малоотходных химических производств на основе максимального использования сырья и энергии химических реакций, комплексного использования сырья и топливно-энергетических ресурсов, увеличения единичной мощности агрегатов, комбинирования и совмещения производств, автоматизации производства.

Динамика и масштабы производства основных продуктов химической промышленности.

Раздел 2.

ХИМИЧЕСКОЕ ПРОИЗВОДСТВО. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Понятие о химическом производстве как о совокупности взаимосвязанных потоками элементов с протекающими в них процессами, в том числе химическими превращениями - химико-технологическая система (ХТС), предназначенной для переработки сырья в средства производства и продукты потребления.

Состав XTC (функциональные подсистемы) - подготовка сырья, химическое превращение, выделение продукта, обезвреживание и утилизация отходов, тепло- и энергообеспечение, водоподготовка, управление процессом.

Основные технологические компоненты - сырье, целевой и побочный продукты, полупродукты, отходы производства, энергетические ресурсы основные и вторичные.

Иерархическая организация процессов в химическом производстве - процесс (Π), химико-технологический аппарат (XTA), химико-технологический процесс ($XT\Pi$), химическое производство ($X\Pi$), производственное объединение (ΠO). Их определения.

Качественные и количественные критерии оценки эффективности химического производства.

Технологические - степень превращения сырья, селективность процесса, выход продукта по сырью, расходные коэффициенты по сырью и энергии.

Экономические - производительность, мощность, себестоимость продукта, приведенные затраты, удельные капитальные затраты, производительность труда.

Эксплуатационные - надежность и безопасность функционирования XTC. Социальные - экологическая чистота производства, степень автоматизации.

Методологические основы химической технологии как науки - системный анализ сложных схем и взаимодействий их элементов, математическое моделирование процессов в химическом производстве на основе глубокого изучения физико-химических закономерностей, явлений переноса тепла, вещества и импульса. Основные определения и понятия системного анализа, математического моделирования. Иерархическая структура математической модели, основные этапы математического моделирования. Место и значение эксперимента и физического моделирования.

Раздел 3.

ХИМИЧЕСКИЕ ПРОЦЕССЫ

3.1. Общие закономерности

Химический процесс (XП) - взаимодействие химического превращения и физических процессов переноса тепла и вещества на молекулярном уровне - основной элементарный процесс в химическом реакторе. Классификация ХП по комплексу признаков: химические признаки (вид химической реакции, термодинамические характеристики, схема, превращений), фазовые признаки (число взаимодействующих фаз, их агрегатное состояние), признаки стационарности процесса.

Основные показатели XП - степень превращения, выход продукта, избирательность, скорость реакции и превращения. Их взаимосвязь. Физико-химические закономерности химического превращения - стехиометрические, термодинамические и кинетические.

3.2. Гомогенные химические процессы

Гомогенные химические процессы - основной вид XП для изучения влияния физико-химических закономерностей химических превращений на показатели XП.

Влияние условий проведения и химических признаков на скорость и степень превращения, селективность дифференциальную и интегральную, выход продуктов, развитие процесса во времени. Пути и способы интенсификации гомогенных процессов.

Понятие оптимальных температур. Оптимальные температуры для обратимых и необратимых экзо- и эндотермических XП.

3.3. Гетерогенные (некаталитические) химические реакции

Фазовый состав системы в гетерогенных ХП. Гетерогенные системы газжидкость (жидкость-жидкость) и газ-твердое (жидкость-твердое). Стадии гетерогенного процесса. Взаимное влияние химической реакции и переноса массы. Наблюдаемая скорость химического превращения. Лимитирующая стадия и ее определение. Области протекания гетерогенных процессов. Влияние условий протекания процесса на наблюдаемую скорость превращения

в кинетической и диффузионной областях. Пути и способы интенсификации гетерогенных ХП.

3.4. Промышленный катализ

Катализ как способ управления (изменения скорости и селективности) химической реакции с помощью катализаторов. Значения и области применения промышленного катализа. Требования к промышленным катализаторам - активность, селективность, стабильность (механическая, термическая, к отравлению и загрязнению), стоимость.

Гомогенный катализ. Скорость превращения при гомогенном катализе. Влияние условий осуществления процесса на эффективность гомогенно-каталитического процесса. Ферментативный катализ.

Гетерогенный катализ на твердом катализаторе. Наблюдаемая скорость химического превращения на каталитической поверхности и в пористом зерне катализатора. Области протекания гетерогенно-каталитического ХП. Влияние условий осуществления процесса на наблюдаемую скорость превращения и селективность. Степень использования внутренней поверхности.

Тепловые явления в гетерогенно-каталитическом XII. Режимы экзотермического процесса на внешней поверхности катализатора. Неоднозначность режимов и их устойчивость.

Дезактивация катализаторов. Пути интенсификации каталитических процессов.

Раздел 4.

ХИМИЧЕСКИЕ РЕАКТОРЫ

4.1. Основные положения

Требования к химическим реакторам (XP) как основному аппарату химикотехнологической системы: обеспечение и поддержание необходимых параметров процесса; достижение высоких выходов целевого продукта, селективности, интенсивности процесса; обеспечение устойчивости и стабильности режима; достижение минимальных энергетических и экономических затрат; простота конструкции, подготовки к эксплуатации, регулирования и ремонта; малая стоимость и материалоемкость.

Процесс в химическом реакторе как осуществление химических процессов в потоке реагентов и тепла в объеме реактора.

Структурные элементы XP - реакционный объем, устройства ввода и вывода потоков, теплообменные элементы, устройства смешения и распределения потоков.

Классификация реакторов по комплексу признаков: организация потоков реагентов (схема движения потоков через реактор, структура потоков в реакционной зоне), организация тепловых потоков (тепловой режим, схема теплообмена). Обзор конструкций XP - емкостные, колонные, трубчатые, многослойные аппараты и т.д.

Методика построения математической модели процессов в реакторе на основе данных о скорости химического превращения, структуре потока, явлений переноса тепла и вещества. Уравнения материального и теплового

балансов в химическом реакторе. Математические модели процессов в XP различного типа. Значительное разнообразие конструкций реакторов и ограниченное число типов уравнений математического описания.

Математические описания процессов в режимах идеального смешения (непрерывного и периодического) и идеального вытеснения - основные математические модели процессов в химических реакторах.

4.2. Изотермические процессы в XP (Режимы идеального смешения - периодический и непрерывный и идеального вытеснения)

Влияние структуры потока (идеальное смешение и вытеснение), параметров и условий протекания процесса (температура, концентрация, давление, время пребывания) и вида химической реакции (простая и сложная, обратимая и необратимая) на профили концентраций (степени превращения) и показатели функционирования реактора (степени превращения реагентов, выход продукта, селективность процесса). Сопоставление процессов в режимах идеального смешения и вытеснения. Каскад реакторов, аналитический и графический методы расчета реакторов. Расчет степени превращения и селективности процесса, объема реактора.

Показатели процесса в реакторах с режимом движения реагентов, отличных от режимов идеального смешения и вытеснения.

4.3. Неизотермические процессы в ХР

Температура в реакторе и в реакционной зоне при режимах идеального смешения и идеального вытеснения. Профили температуры и концентрации (степени превращения). Связь температуры и степени превращения для адиабатического процесса.

Оптимизация температурного режима в многослойном реакторе при адиабатическом протекании обратимой реакции в каждом слое.

Число и устойчивость стационарных режимов в реакторе идеального смешения. Существование и устойчивость режима в реакторе с внешним теплообменником и автотермическом реакторе с внутренним теплообменом.

Параметрическая чувствительность и пространственные неоднородности (определения и влияние на показатели процесса).

4.4. Промышленные химические реакторы

Типовые конструкции промышленных химических реакторов. Вид химического превращения, организация материальных и тепловых потоков в реакторе, оптимизация режима, основные конструктивные размеры и показатели функционирования реактора.

Раздел 5.

ХИМИКО-ТЕХНОЛОГИЧЕСКИЕ СИСТЕМЫ (ХТС)

5.1. Структура и описание XTC

XTC - конкретное представление химического производства. Общие требования к XTC. Состав XTC (элементы и потоки). Виды моделей (описаний) XTC - графические и описательные.

Графическое описание (модель, схема). Схемы XTC - функциональная, технологическая, структурная. Их описание (форма представления) и

применение в синтезе и анализе XTC.

Описательные модели. Химическое описание. Математическое описание (общий вид) и применение ЭВМ.

Технологические связи элементов XTC (потоки), их назначение и характеристика. Последовательная, параллельная, последовательно-обводная (байпас), обратная (рецикл), перекрестная, разветвленная технологические связи. Рециклы полный и фракционный, простой и сложный. Коэффициент рециркуляции (кратность циркуляции). Разомкнутые и замкнутые XTC. Примеры применения различных видов связей в синтезе XTC.

5. 2. Синтез и анализ XTC

Основные концепции при построении (синтезе) XTC: глубокая переработка сырья, полное использование сырьевых ресурсов, минимизация отходов производства, оптимальное использование аппаратуры. Способы оптимизации и пути решения проблемы создания высокоэффективных производств, Энерготехнологические (химико-энергетические) системы, особенности их построения и преимущества. Основы комбинирования производств.

Анализ ХТС. Появление в ХТС новых качественных свойств, не характерных для отдельных элементов (взаимная зависимость режимов элементов, области существования режимов, неустойчивость, оптимальность системы в целом, проблемы надежности системы и др.).

Расчет ХТС. Методика составления и расчета материальных и тепловых балансов ХТС и ее подсистем. Особенности составления балансовых уравнений в схемах с рециклом. Формы их представления (таблицы, диаграммы и др.). Использование стехиометрических, термохимических, термодинамических и межфазных балансовых соотношений.

Энергетический (энтальпийный) и эксергетический балансы, диаграммы потоков и КПД. Эксергетический анализ как метод оценки эффективности использования потенциала сырья и энергии.

Анализ функционирования XTC. Чувствительность и устойчивость к отклонениям условий эксплуатации и нарушениям режима. Безопасность производства. Надежность XTC. Проблемы пуска и остановки агрегатов.

Технологический анализ XTC. Расчет основных показателей XTC. Структура техно-экономических показателей и значения ее составляющих в химическом производстве.

Раздел 6.

СЫРЬЕВАЯ И ЭНЕРГЕТИЧЕСКАЯ ПОДСИСТЕМЫ ХТС

6.1. Сырьевые источники химического производства

Характеристика и классификация сырья по происхождению, агрегатному состоянию, химической природе. Возобновляемые и невозобновляемые источники сырья. Замена пищевого сырья. Использование отходов производства как вторичных материальных ресурсов.

Подготовка сырья в химико-технологическом процессе: сортировка измельчение, агломерация, обогащение (концентрирование), очистка.

Вода как сырье и вспомогательный компонент химического производства.

Источники воды. Требования к качеству воды. Промышленная водоподготовка (очистка от взвешенных примесей, умягчение, обессоливание, нейтрализация).

6.2. Энергия в химическом производстве

Потребление энергии и энергоснабжение в химическом производстве. Общая характеристика и классификация энергетических ресурсов в химической технологии. Источники энергии в химическом производстве.

Рациональное использование энергии. Способы энерготехнологического комбинирования в химической технологии и использование энергетического потенциала сырья и тепла экзотермических реакций. Вторичные энергоресурсы (ВЭР), их классификация, основные направления утилизации (генерация водяного пара, преобразование в механическую энергию, рекуперация тепла, теплоснабжение, трансформация в холод и др.).

Раздел 7.

ОСНОВЫ ПРОМЫШЛЕННОЙ ЭКОЛОГИИ

7.1. Основные положения экологии

Понятие экологии. Экологическое равновесие в природе. Влияние производственной деятельности человека на окружающую среду. Виды вредных воздействий (факторов) и их влияние на природу. Предельнодопустимые экологические воздействия для разного вида вредных факторов. Понятие о предельно-допустимых концентрациях (ПДК) и выбросах (ПДВ). Влияние химических производств на окружающую среду и человека. Основные направления работ по охране окружающей среды от промышленных воздействий.

7.2. Экологические проблемы химического производства

Охрана окружающей среды от промышленных загрязнений как технологическая проблема.

Понятие о безотходной и малоотходной технологии. Основные направления в ее развитии (бессточные ХТС, санитарная очистка отходов, и переработка отходов как вторичных материальных ресурсов, комбинирование производств, территориально-промышленные комплексы).

Технологические решения по сокращению сточных вод. Возможные источники загрязнения, методы предотвращения загрязнения и основные методы очистки сточных вод. Повторное использование сточных вод в системах оборотного водоснабжения и в технологических стадиях процессов, создание бессточных химических производств. Общие принципы и схемы организации систем оборотного водоснабжения.

Переработка жидкофазных отходов. Характеристика загрязнений и методы очистки вод. Рекуперация ценных компонентов из жидких отходов. Использование тепла при переработке отходов.

Переработка газообразных отходов. Характеристики возможных выбросов, меры их предотвращения и методы очистки (пылеулавливание, обезвреживание, каталитическая очистка и др.).

Источники и характеристики твердых отходов. Сбор, удаление, переработка и использование твердых отходов.

Раздел 8.

ПРОМЫШЛЕННЫЕ ХИМИЧЕСКИЕ ПРОИЗВОДСТВА

При изучении технологии основных химических продуктов демонстрируется построение XTC конкретных производств и организация процессов в химических реакторах, рассматриваются и перспективные направления в создании безотходного производства. Рассмотрение конкретных технологических процессов проводится в следующем порядке:

- 1. Народно-хозяйственное значение, масштабы производства. Промышленные способы получения, эволюция технологии.
- 2. Сырьевые источники получения продукта и требования к процессу в рассматриваемой XTC.
- 3. Физико-химические основы процесса (схема превращения, стехиометрические, термодинамические и кинетические закономерности).
- 4. Построение функциональной и технологической (структурной) схем XTC.
- 5. Построение и анализ функциональных подсистем. Реализация основных концепций построения высокоэффективной ХТС.
- 6. Аппаратурные решения отдельных узлов в рассматриваемом производстве. Основные технологические параметры процессов.
 - 7. Решение проблем экологической безопасности производства.
 - 8. Технико-экономические показатели производства.

Перечень рассматриваемых химических производств включает:

- 1. Производство серной кислоты и олеума.
- 2. Производство аммиака.
- 3. Производство азотной кислоты.
- 4. Производство солей и удобрений.
- 5. Электрохимические производства водорода, хлора и едкого натра.
- 6. Переработка газообразных, жидких и твердых горючих ископаемых.
- 7. Промышленный органический синтез на основе CO и H_2 , парафинов, непредельных углеводородов и ацетилена.
- 8. Производство высокомолекулярных соединений.
- 9. Производство силикатных материалов.
- 10. Производства черных и цветных металлов. Выбор производств осуществляется с учетом специализации ВУЗа, факультета, потока.

Раздел 9.

ЗАКЛЮЧЕНИЕ

Основные выводы по курсу. Современные тенденции в развитии теории и практики химической технологии. Новые химико-технологические процессы и способы получения продуктов. Перспективные источники сырья и энергии.

3. КАЛЕНДАРНЫЙ ГРАФИК ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

3.1. Программа лекций

Таблица 2.

NoNo	Тематика лекций	Объем,
		часов
1	Раздел 1	1
2	Раздел 2	4
3	Раздел 3	7
4	Раздел 4	9
5	Раздел 5	7
6	Раздел 6	7
7	Раздел 7	5
8	Раздел 8	10
9	Раздел 9	1
Итого	в 8 семестре	51

3.2. ПРАКТИКУМ

Основной задачей практикума является изучение отдельных химических процессов, экспериментальное определение показателей функционирования химических реакторов, анализ процессов в реакторах и ХТС с применением ЭВМ. В соответствии с этими задачами тематика практикума может быть представлена тремя основными разделами: химические процессы, химические реакторы, химико-технологические системы.

Темы практических работ:

- А. Химические процессы.
- 1. Гетерогенный процесс "газ-твердое" (Определение лимитирующей стадии, скорости превращения).
- 2. Гетерогенный процесс "газ-жидкость" (определение скорости превращения, лимитирующей стадии).
- 3. Гетерогенно-каталитический процесс в пористом зерне (определение скорости превращения, области протекания процесса, параметров процесса).
- 4. Процесс на внешней поверхности зерна катализатора (изучение устойчивости процесса).
- 5. Химический процесс со сложной схемой превращения (изучение влияния условий на показатели, в том числе селективность).
 - 6. Химические реакторы:
 - 1. Химический реактор с различным режимом движения реагентов (Определение эффективности процесса, параметров математического описания).
 - 2. Многослойный реактор (оптимизация режима).
 - 3. Санитарная очистка (определение условий очистки воздуха, жидкости от примесей).
 - 4. Расчет реактора по кинетическим данным, полученным при выполнении работы из раздела А с применением ЭВМ.

- Б. Химико-технологическая система.
- 1. Химико-технологическая система получения товарного продукта из сырья (расчет материального баланса).
- 2. Расчет на ЭВМ основных показателей эффективности функционирования XTC (обучение управлению XTC при нарушении режима работы).

3.3. СЕМИНАРСКИЕ ЗАНЯТИЯ

На семинарских занятиях студенты обучаются расчетам, необходимым для определения основных параметров технологического режима и показателей эффективности химико-технологических процессов, выбора и расчета реактора, балансовых расчетов ХТС. При этом используются расчетные формулы, графики, табличные данные и вычислительная техника. На семинарских занятиях возможно проведение расчетов с привлечением экспериментальных данных.

Темы:

- 1. Расчет наблюдаемой скорости превращения в гетерогенном химическом процессе.
- 2. Расчет степени превращения реагентов и объема катализатора в реакторах с неподвижным и кипящим слоем катализатора.
- 3. Расчеты жидкостных и газо-жидкостных химических процессов и реакторов.
- 4. Выбор и сравнение реакторов при проведении в них заданного типа реакций.
- 5. Сравнение эффективности реакторов с различными режимами движения потоков при протекании простых и сложных реакций.
- 6. Графический и аналитический расчеты каскада реакторов.
- 7. Расчет и анализ устойчивости реактора с различным тепловым режимом.
- 8. Расчет материальных и тепловых балансов XTC, определение эффективности использования сырья и энергоресурсов.

<u>Примечание</u>: Практические занятия (практикум и семинарские занятия) могут включать более активные формы обучения:

- комплексный практикум, включающий последовательное выполнение взаимосвязанных этапов занятий и расчетных упражнений;
 - выполнение расчетно-графической работы;
 - практические занятия в форме "деловая игра".

3.3.Объем, структура и содержание самостоятельной работы студентов, график ее выполнения

График выполнения самостоятельной работы студентов

Таблица 5.

Вид	Число часов в неделю							Итого по										
самостоятельной работы	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	видам работы
Подготовка к лекциям		0,5		0,5		0,5		0,5		0,5		0,5		0,5		0,5		4
Подготовка отчета по практическим работам	1	1	1	1	2	1	1	1	1	2	1	1	1	1	2	1	1	20
Подготовка к контрольным мероприятиям	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2,	2	27
ИТОГО по курсу	2	2,5	2	2,5	3	2,5	2	3,5	3	4,5	3	3,5	3	3,5	4	3,5	3	51

4. ТЕХНОЛОГИИ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОНТРОЛЯ РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЕМЫХ

4.1. Технологии и методическое обеспечение контроля текущей успеваемости

Результаты текущего контроля служат основанием для **рейтинговой системы контроля и оценки** текущей успеваемости, а также выставления зачета в ведомость на зачетной неделе.

В течение семестра выполняются практические работы, принимается коллоквиум (16 неделя).

Таблица 6.

Рейтинговая система оценки успеваемости

Вид работы	Количество	Максимальный	Сумма	Форма
	работ	Балл за 1	баллов за	отчетности
		работу	вид работы	
Выполнение	10	5	50	Оформленный
практических				рабочий
работ				журнал
Защита	7	5	35	Устный ответ
семинарских				
работ				
Подготовка к	1	50	50	Оформленный
контрольным				письменный и
мероприятиям				устный ответ
ИТОГО	_		135 баллов	

Выполнение указанных видов работ является обязательным для всех студентов!

Каждая работа сдается в индивидуально установленные сроки. Работа, сданная не в срок без уважительной причины, оценивается половиной баллов от максимально возможного значения. Студент считается успевающим, если на момент аттестации он получил не менее 80% баллов от максимально возможного числа баллов, установленных к данному времени.

4.2. Технологии и методическое обеспечение промежуточной аттестации

Результаты рейтинговой системы контроля служат основанием для оценки в ведомость на зачетной неделе. Студент получает «Зачет», если к зачетной неделе он выполнил все виды работ и получил не менее 80% баллов от максимально возможного числа баллов (110 баллов).

Студент получает на экзамене оценку **«неудовлетворительно»**, если он не ответил на два вопроса; **«удовлетворительно»**, если он ответил на два вопроса, но допустил существенные погрешности в ответе; **«хорошо»**, если он ответил на два вопроса и допустил незначительные неточности в ответе; **«отлично»**, если ответил на два вопроса и правильно ответил на дополнительные вопросы по теме.

5. РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ КУРСА

5.1. Список основной учебной и учебно-методической литературы

- 1. Общая химическая технология. Учебник для студентов химикотехнологических специальностей ВУЗов в 2-х частях под ред. И.П.Мухленова, М.: Высшая школа, 1977.
- 2. Кафаров В.В., Перов В.Л., Мешалкин В.П. Принципы математического моделирования химико-технологических схем. Учебное пособие, М.: Химия, 1974.
- 3. Расчеты химико-технологических процессов под ред. И.П.Мухленова, Л., Химия, 1982.
- 4. Авербух А.Я. и др. Практикум по общей химической технологии, М.: Высшая школа, 1979.
- 5. Орехов И.И., Обрезков В.Д. Холод в процессах химической технологии: учебн. пос., Л.: Изд-во Ленингр. Ун-та, 1980.
- 6. Кутепов А.М., Бондарева Т.И., Беренгартен М.Г. Общая химическая технология: учеб. для техн. ВУЗов. М.: В.Ш., 1990.
- 7. Кузнецова И.М., Харлампиди Х.Э., Батыршин Н.Н. Общая химическая технология: материальный баланс химико-технологического процесса: Учебное пособие для ВУЗов. М.: Университетская книга, Логос, 2007.
- 8. Соколов Р.С. Химическая технология: Учебное пособие для ВУЗо: в 2 т. М.: ВЛАДОС, 2000.
- 9. Соколов Р.С. Практические работы по химической технологии: Учебное пособие для ВУЗов. М.: ВЛАДОС, 2004.

ЭКЗАМЕННАЦИОННЫЙ ВОПРОСЫ по ОХТ

- 1. Предмет, цели и задачи ОХТ.
- 2. Основные направления, динамика и масштабы химического производства.
- 3. Пути интенсификации химических процессов и аппаратов.
- 4. Химический процесс: классификация, основные показатели.
- 5. Равновесие в технологических процессах.
- 6. Скорость технологических процессов.
- 7. Катализ, требования к промышленным катализаторам.
- 8. Химический реактор идеального вытеснения.
- 9. Химический реактор полного смешения проточный.
- 10. Каскад реакторов полного смешения: алгебраический и графический расчеты.
- 11. Реактор периодического действия.
- 12. Производительность и экономические показатели реакторов периодического и непрерывного действия.
- 13. Селективность параллельных и последовательных реакций.
- 14. Температурный режим адиабатических, изотермических и политермических реакторов.
- 15. Устойчивость работы реакторов.
- 16. Гомогенные процессы и реакторы.
- 17. Гетерогенные некаталитические процессы и реакторы.
- 18. Каталитические процессы и реакторы.
- 19. Химико-технологические системы: определение, иерархия, схемы XTC, модели, энерготехнические системы.
- 20. Использование нефтяного сырья в органическом синтезе.
- 21. Химическая переработка твердого топлива.
- 22. Переработка нефти и нефтепродуктов: перегонка, крекинг, риформинг.
- 23. Способы получения водорода: конверсия метана, оксида углерода и воды, разделение коксового газа, электролиз воды.
- 24. Синтез метилового спирта.
- 25. Синтез этилового спирта.
- 26. Производство бутадиена (дивинила).
- 27. Получение ацетилена.
- 28. Производство ацетальдегида.
- 29. Получение уксусной кислоты.
- 30. Производство целлюлозы.
- 31. Производство химических волокон из целлюлозы.
- 32. Производство пластических масс (фенолоформальдегидные смолы).
- 33. Производство каучука.
- 34. Производство серной кислоты и олеума.
- 35. Производство аммиака.
- 36. Производство азотной кислоты, ее солей и удобрений.
- 37. Решение проблемы экологической безопасности производства.