Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

На правах рукописи

Хасаншин Сергей Дамерович

Математическое моделирование процесса распознания снимков флюорографического обследования грудной клетки с использованием элементов машинного обучения

Направление подготовки 09.04.03 «Прикладная информатика»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ ДИСЕРТАЦИИ

Работа выполнена в ФГБОУ ВО «Комсомольский-на-Амуре государственный университет»

Научный руководитель:	кандидат физико-математиче- ских наук, доцент, заведующая кафедры «Прикладная матема- тика» Григорьева Анна Леони- довна	
Рецензент:	кандидат физико-математических наук, программист высшей категории отдела мобильных решений ООО «Индорсофт» Лошманов Антон Юрьевич	

Защита состоится 20 июня 2025 года в 9 часов на заседании государственной экзаменационной комиссии по направлению подготовки 09.04.03 «Прикладная информатика» в Комсомольском-на-Амуре государственном университете по адресу: 681000, г. Комсомольск-на-Амуре, пр. Ленина, 27, ауд. 204/5.

Автореферат разослан 13 июня 2025 г.

Секретарь ГЭК

3.В. Широкова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования обусловлена важностью своевременно и точной диагностики пневмонии. Несмотря на широкое использование скрининговых методов обследования грудной клетки, существующие подходы к анализу снимков имеют существенные ограничения: влияние человеческого фактора, усталость врачей-рентгенологов, субъективность оценки и нехватка квалифицированных специалистов, особенно в развивающихся странах. Современные технологии искусственного интеллекта, в частности методы машинного обучения, открывают новые возможности для автоматизации анализа медицинских изображений.

С теоретической точки зрения, применение машинного обучения для анализа снимков грудной клетки открывают широкие возможности. Методы машинного обучения способны обучаться на больших объёмах данных, выявлять сложные закономерности и паттерны, которые могут быть незаметны человеческому глазу. Такие системы могут работать круглосуточно без снижения производительности, что особенно важно для обработки большого количества снимков.

С практической точки зрения актуальность темы исследования объясняется следующим: по запросу «Recognition of pneumonia types using neural network based on image analysis (Распознавание типов пневмонии с помощью нейронной сети на основе анализа изображений)» в одном из популярных научный журналах «ScienceDirect», выдаёт 178 статей открытого доступа за 2024 г. в большинстве статей затрагивается тема использования нейронных сетей для прогнозирования болезней, что демонстрирует о растущей востребовательности на данный подход и о важности его в медицине.

Целью является разработка и исследование методов машинного обучения для автоматизированного анализа фонографических снимков грудной клетки.

Задачи исследования:

- 1. Провести исследование предметной области и сформировать набор данных;
- 2. Разработать алгоритм на основе машинного обучения для распознавания пневмонии;
- 3. Создать информационный модуль для интеграции модели в процесс диагностики.

Объектом исследования являются процессы анализа флюорографических снимков грудной клетки.

Предметом исследования выступают методы машинного обучения, применяемые для автоматизированного распознавания патологий на медицинских изображениях.

Методы исследования включают анализ литературы по машинному обучению и обработке медицинских изображений, методы статистической обработки данных, технологии создания нейронных сетей и другие современные подходы к анализу изображений.

Научная новизна работы заключается в разработке комплексного подхода к автоматизации анализа флюорографических снимков, учитывающего специфику медицинских данных и особенности их интерпретации.

Достоверность и обоснованность результатов исследования обеспечивается использованием проверенных методик машинного обучения, проведения экспериментов на реальных данных и сравнительным анализом различных подходов к решению задачи.

Практическая значимость работы определяется возможностью применения разработанной системы как вспомогательного инструмента для врачей-рентгенологов что позволит повысить точность и скорость диагностики.

Основные положения, выносимые на защиту

1. Методика формирования набора данных для обучения модели на основе методик машинного обучения.

- 2. Алгоритм автоматического распознавания патологий на флюорограммах.
- 3. Информационный модуль для интеграции модели в диагностический процесс.

Достоверность результатов исследования определяется применением математических методов путём экспериментального сравнения на основе результатов, полученных в совокупности результатам работы нейронной сети, на основе анализа полученных значений после обучения нейронной сети и сравнение их с существующими данными.

Апробация результатов исследования осуществлены путём участия в научных конференциях:

- Материалы III Всероссийской научно-практической конференции молодых учёных «Наука, инновации и технологии: от идей к внедрению» (Комсомольск-на-Амуре, 11.12.2024). С. 233–236.
- Материалы Международной научно-практической конференции «Молодёжь и наука: актуальные проблемы фундаментальных и прикладных исследований», секция «Математическое моделирование в технических и естественных науках» (Комсомольск-на-Амуре, 25.02.2025). С. 589–592.
- Материалы Международной научно-практической конференции «Молодёжь и наука: актуальные проблемы фундаментальных и прикладных исследований», секция «Математическое моделирование в технических и естественных науках» (Комсомольск-на-Амуре, 25.02.2025). С. 592–596.
- Григорьева, А.Л. Математическое моделирование процесса распознавания снимков флюорографического обследования грудной клетки с использованием элементов машинного обучения: программ для ЭВМ / А.Л. Григорьева, С.Д. Хасаншин, Я.Ю. Григорьев; дата регистрации 22.05.2025; свидетельство о государственной регистрации №2025662476.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дано обоснование актуальности и характеристика работы, сформулированы цель и задачи, указаны методы исследования, представлены основные положения, показана научная новизна и практическая значимость, описана структура работы.

В первой главе раскрывается понятие современных методов диагностики пневмонии с использованием медицинской визуализации.

Проведён анализ основных методов скрининга, включая флюорографию, рентгенографию, компьютерную томографию и МРТ. Для каждого метода определены ключевые преимущества и недостатки. Выделены три основные категории проблем традиционной диагностики: технические ограничения, ошибки интерпретации и организационные сложности.

Рассмотрены существующие программные решения для автоматизированного анализа рентгеновских снимков, включая «XRay-Pneumonia-Detection-GUI» и «LungGuard». Проанализированы их сильные и слабые стороны.

На основе проведённого анализа сформулированы требования к разрабатываемой системе, включая необходимость интеграции модуля для работы с историей пациента, возможность смены моделей нейронной сети и кроссплатформенность решения.

Предложена постановка задачи исследования, направленного на разработку комплексного приложения для диагностики пневмонии, сочетающего функции анализа изображений и ведения электронной медицинской карты пациента.

Во второй главе рассмотрены основы машинного обучения, в частности задачи машинного обучения (таблица 1).

Таблица 1 – Задачи машинного обучения

Подход	Описание	Примеры задач	
Обучение с учителем / Su-	В этом случае модель обуча-	Регрессия: предсказание не-	
pervised Learning	ется на наборе данных, со-	прерывных значений	
	держащем пары «вход-вы-	(например, прогнозирова-	
	ход» (x_i, y_i) . Цель состоит в	ние уровня сахара в крови).	
	том, чтобы научиться пред-	Классификация: предсказа-	
	сказывать у для новых зна-	ния дискретных меток	
	чений χ .	(например, наличие или отсутствие заболевания.)	
Обучение без учителя / Un-	Здесь модель работает	Кластеризация: группи-	
supervised Learning	только с выходными дан-	ровка схожих объектов.	
	ными x_i , без известных ме-	Снижение размерности:	
	ток у. Задача заключается в	преобразование данных в	
	выявлении скрытых струк-	пространство меньшей раз-	
	тур или закономерностей в	й в мерности.	
	данных.		
Обучение с подкреплением /	Модель взаимодействует с	Этот тип обучения широко	
Reinforcement Learning	окружающей средой, полу-	используется в робототех-	
	чая награды или штрафы за	нике и играх, но реже при-	
	свои действия. Цель – найти	меняется в медицине.	
	стратегию поведения, мак-		
	симизирующую общую		
	награду.		

Так же рассмотрены основные методы машинного обучения. И рассчитаны основные этапы разработки модели машинного обучения.

В третей главе описано математическая основа работы. Представлена целевая функция (1) с системой ограничений (2).

$$L(W,b) = \frac{1}{N_{train}} \sum_{i=1}^{N_{train}} w(y_i) * l(f(x_i; W, b), y_i) \to min$$

$$\begin{cases} 0 \le f(x; W, b) \le 1 \ \forall x \in X, \\ w(y) > 0, \forall y \in \{0,1\}, \\ ||\nabla_w L(W, b)|| \le C, \end{cases}$$

$$(2)$$

Ниже представлено описание каждого параметра из системы ограничений (2).

1. Ограничение на предсказания (3). Предсказания модели должны лежать в диапазоне [0,1], так как используется сигмоидальная активация на выходном слое:

$$0 \le f(x; W, b) \le 1, \forall x \in X. \tag{3}$$

2. Ограничение на веса классов (4). Веса классов w(y) должны быть положительным и отражать дисбаланс классов:

$$w(y) > 0, \forall y \in \{0,1\}.$$
 (4)

3. Ограничение на градиентное обновление (5). Обновление параметров модели должно происходить в рамках допустимых значений (например, предотвращение «взрыва» градиентов):

$$\left| \left| \nabla_{W} L(W, b) \right| \right| \le C. \tag{5}$$

4. Ограничение на скорость обучения (6). Скорость обучения η должна быть положительной и достаточно малой для стабильной сходимости.

$$0 < \eta \le \eta_{max}. \tag{6}$$

5. Ограничение на остановку (7). Если значение функции потерь на валидационной выборке не улучшается в течении P эпох, обучение прекращается.

$$\mbox{Eсли} \ L_{val} > L_{val}(t-1), \mbox{для всех } t \in [T,T+P], \mbox{то обучение завершается}. \eqno(7)$$

В четвёртой главе был представлен набор данных, который используется для обучения и тестирования моделей который состоит из следующих выборок (таблица 4).

Таблица 2 – Выборки для обучения и тестирования модели

Наименование вы-	Общее количество	Класс 0, Норма	Класс 1, Пневмония
борки	данных		
Тренировочная	4192	1082	3110
Валидационная	1040	267	773
Тестовая	624	234	390

Так же в данной главе описано несколько подходов для создания свёрточной нейронной сети. Один подход основывается на «переносном» обучении, а второй на создании, собственной свёрточной сети.

В первом подходе были рассмотрены различные модели из открытой библиотеки «keras»: ResNet, DenseNet, Inception, VGG. В процессе обучения для данного подхода все модели проверялись в одинаковых условия, т.е. все гиперпараметры были одинаковы, а также архитектура для всех была одна и та же (рисунок 1).

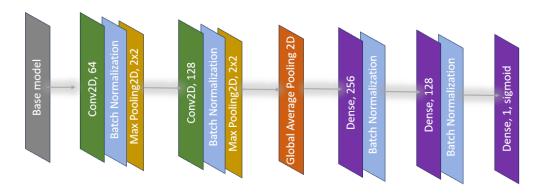


Рисунок 1 — Архитектура свёрточной нейронной сети на основе переносного обучения

И в последствии модель из семейства DenseNet под названием DenseNet169 достигла наиболее лучшие результаты по параметрам производительности, и смогла добиться лучших параметров в «матрице ошибок» (рисунок 2).

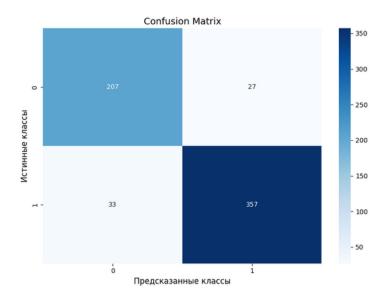


Рисунок 2 – Матрица ошибок модели DenseNet169

Во втором подходе была представлена собственная свёрточная нейронная сеть (рисунок 3).

Рисунок 3 – Архитектура свёрточной нейронной сети

В процессе обучения данной модели варьировался шаг обучения, что в последствии привело модель к следующему результату, рассмотрим производительность на примере «матрицы ошибок» (рисунок 4).

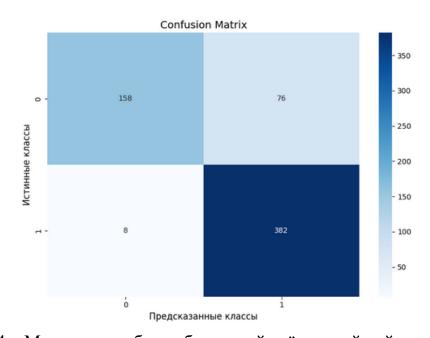


Рисунок 4 — Матрица ошибок собственной свёрточной нейронной сети Как видно из рисунка 4, что модель собственной сети отлично справилось

с тестовой выборкой и её диагональ истинных предсказаний превышает ложные.

Таким образом мы получили две отличные модели из различных подходов. Которые в последствии можно поместить в интерфейс и использовать их для анализа изображений. Данный пользовательский интерфейс рассматривает в конце четвёртой главы.

Пользовательский интерфейс (рисунок 5): в правом верхнем углу находятся кнопки «Выбрать пациента» (для загрузки изображений) и «Выбрать модель» (для загрузки модели нейросети). После выбора пациента изображения грудной клетки отображаются ниже, а в таблице «Результаты» показываются расчеты и предсказания. Справа расположены таблицы «История пациента» и «Анализы», значения из которых также влияют на результаты.

Данный интерфейс выступает вспомогательным инструментом для внедрения модели нейронной сети в рабочий процесс. С возможностями выбора различных моделей в последствии увеличивается срок эксплуатации без лишних внедрении в код интерфейса, что даёт возможность постоянно обновлять модели без остановок во время работы врача специалиста.

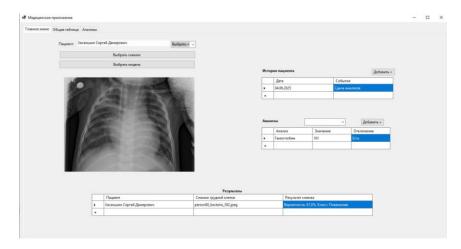


Рисунок 5 – Пользовательский интерфейс

Список основных публикаций по теме диссертации

- 1. Хасаншин, С.Д. Математическое моделирование процесса распознавания снимков флюорографического обследования грудной клетки, с использованием элементов машинного обучения / С.Д Хасаншин // Материалы III Всероссийского научного-практической конференции молодых учёных «Наука, инновации и технологии: от идей к внедрению»: в ч.2 Комсомольск-на-Амуре, 11.12.2024 С. 233-236.
- 2. Хасаншин, С.Д. Математическое моделирование процесса распознавания снимков рентгеновского обследования грудной клетки, с использованием глубокого обучения / С.Д. Хасаншин // Молодёжь и наука: актуальные проблемы фундаментальных и прикладных исследований: материалы междунар. научн. паркт. конф., секция «Математическое моделирование в технических и естественных науках»: в ч.2 Комсомольск-на-Амуре, 25.02.2025 С. 589-592.
- 3. Хасаншин, С.Д. Анализ и оптимизация процесса создания датасета для автоматизированного анализа рентгеновских снимков грудной клетки / С.Д. Хасаншин // Молодёжь и наука: актуальные проблемы фундаментальных и прикладных исследований: материалы междунар. научн. паркт. конф., секция «Математическое моделирование в технических и естественных науках»: в ч.2 Комсомольск-на-Амуре, 25.02.2025 С. 592-596