Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет» Кафедра «Механика и анализ конструкций и процессов»

УТВЕРЖДАЮ

Первый проректор

И.В. Макурин 20/8 г.

РАБОЧАЯ ПРОГРАММА

унифицированной дисциплины «Теоретическая механика»

ОПОП бакалавров по направлениям подготовки

08.03.01 Строительство

26.03.02 Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры

Форма обучения

очная

Технология обучения

традиционная

Автор рабочей программы
Старший преподаватель кафедры
«Механика и анализ конструкций и
процессов»

<u>Жил</u> — Ю.Б.Колошенко «<u>18</u>» <u>апреше</u> 20<u>17</u> г.

СОГЛАСОВАНО

Директор библиотеки

<u>И.А.</u> Романовская <u>«18» апреше</u> 20<u>/7</u> г.

Заведующий кафедрой «Механика и анализ конструкций и процессов»

<u>Мин</u> А.А.Буренин «18 » <u>сищеше</u> 20/7 г.

Декан ФКС

18 m <u>Сирене</u> 20/7 г.

Декан ФЭТМТ

А.В.Космынин

Начальник УМУ

<u>— Е.Е.Поздеева</u> «<u>18</u> » <u>апреті</u> 20/4 г.

Введение

Рабочая программа дисциплины «Теоретическая механика» составлена в соответствии с требованиями федеральных государственных образовательных стандартов высшего образования, утверждённых приказами Министерства образования и науки Российской Федерации по направлениям подготовки:

08.03.01, Строительство (ПС), приказ Минобрнауки России № 36767от 07 апреля 2015 г.;

26.03.02, Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры (КС), приказ Минобрнауки России № 39036 от 29 сентября 2015 г..

1 Аннотация дисциплины

Наименование дисциплины	Теоретическая механика							
Цель дисциплины	Обучение студентов общим законам механического движения и механического взаимодействия материальных тел, методам построения, исследования и решения механико-математических моделей, адекватно описывающих движение и равновесие механических систем. Формирование на данной основе навыков математической культуры, логического мышления и научного кругозора в понимании современной естественнонаучной картины мира.							
Задачи дисциплины	Освоение методов решения научно-технических задач в области механики и основных алгоритмов математического моделирования механических явлений; Овладение навыками практического использования методов, предназначенных для математического моделирования движения и равновесия материальных тел и механических систем; Формирование устойчивых навыков по применению фундаментальных положений теоретической механики при изучении дисциплин профессионального цикла и научном анализе ситуаций, с которыми выпускнику приходится сталкиваться в профессиональной деятельности.							
Основные разделы дисциплины Общая	Статика; Кинемати Динамика 43.е. / 144	1	MINIONE IV	Jagon				
трудоемкость	43.0.7 144	акадск		рная нагр	узка, ч	CPC,	Проме-	Всего
дисциплины	Семестр	Лек ции	Пр. занятия	Лаб. работы	Курсовое проектирование	Ч	жуточ- ная ат- теста- ция, ч	за се- местр, ч
	3 семестр	34	34			40	36	144
	ИТОГО:	34	34			40	36	144

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Дисциплина «Теоретическая механика» нацелена на формирование компетенций, знаний, умений и навыков, указанных в таблице 1.

Таблица 1—Общепрофессиональные и специальные общепрофессиональные компетенции, заданные ФГОС ВОпо направлениям подготовки/специальностям

			Компетенции, формируемые			
$N_{\underline{0}}$	Код	Наименование	на осн	овании учебных планов		
п/п	направления	направления	Код компетенции	Формулировка компетенции		
1	08.03.01	Строительство	ОПК-2	Способность выявить естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физикоматематический аппарат		
2	26.03.02	Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры	ОПК-3	Способность использоватьосновные законы естесственно- научных дисциплин в профессиональной деятельности, применятьметоды математического анализа имоделирования, теоретического иэкспериментального исследования		

В целях унификации на основании компетенций выпускника, определенных ФГОС ВОпо направлениям подготовки, разработана унифицированная дисциплинарная компетенция (УДКм)по дисциплине «Теоретическая механика»:

УДКм - Способность понимать сущность и интерпретировать механические явленияна базовом уровне при помощи соответствующего теоретического аппарата, объяснять характер поведения механических систем с применением важнейших теорем механики и их следствий, использовать методы математического моделирования, теоретического и экспериментального исследования для решения прикладных задач.

Дисциплина « $\underline{Teopemuчeckas механика}$ » нацелена на формирование знаний, умений и навыков формирования компетенции $Y \not \square K M$ в процессе освоения образовательных программ, указанных в таблице 2.

Таблица 2 – Компетенции, знания, умения, навыки

<u>Габлица 2 – Компетенц</u>			
Наименование и шифр		иируемых знаний, ум	
компетенции, в форми-	предусмотрен	ных образовательной	й программой
ровании которой	Hanayayy ayyayyy (a	Перечень умений	Перечень навыков
принимает участие	Перечень знаний (с	(с указанием	(с ука-занием
дисциплина	указанием шифра)	шифра)	шифра)
УДКтм - Способность	31 (УДКтм-3) -	У1 (УДКтм-3) -	Н1 (УДКтм-3) -
понимать сущность и	основные понятия	приводить систе-	навыками исследо-
интерпретировать меха-	и аксиомы механи-	му действующих	вания равновесия
нические явленияна ба-	ки, случаи приве-	сил к более про-	твердого тела (си-
зовом уровне при по-	дения действую-	стому эквивалент-	стемы тел) под
мощи соответствующего	щей на тело систе-	ному виду, со-	действием плоской
теоретического аппара-	мы сил к простей-	ставлять уравне-	и пространствен-
та, объяснять характер	шем виду, условия	ния равновесия	ной систем сил;
поведения механиче-	уравновешенности	для тела, находя-	H2 (УДКтм-3) –
ских систем с примене-	произвольной си-	щегося под дей-	навыками решения
нием важнейших теорем	стемы сил, методы	ствием произ-	задач по кинемати-
=	нахождения реак-	вольной системы	ке точки и твердо-
механики и их след-	ций связей в поко-		_
тоды математического	ящейся системе	сил, находить по-	го тела; Н3 (УДКтм-3) -
		ложения центров	
моделирования, теоре-	твердых тел, спо-	тяжести тел;	навыками состав-
тического и экспери-	собы нахождения	У2 (УДКтм-3) -	ления и решения
ментального исследова-	их центров тяже-	вычислять скоро-	дифференциальных
ния для решения при-	сти; законы трения	сти и ускорения	уравнений движе-
кладных задач.	скольжения и ка-	точек тел и самих	ния точки и систе-
	чения;	тел, совершающих	мы, основами ме-
	32 (УДКтм-3) –	поступательное,	тодов механики
	кинематические	вращательное и	
	характеристики	плоское движения;	
	движения точки	УЗ (УДКтм-3) -	
	при различных	решать прямую и	
	способах задания	обратную задачи	
	движения; харак-	1 0	
	теристики движе-	динамики точки;	
	ния тела и его от-	вычислять кине-	
	дельных точек при	тическую энергию	
	различных спосо-	много массовой	
	бах задания дви-	системы, работу	
	жения; скорость и	сил, приложенных	
	ускорение точки	к твердому телу	
	при сложном дви-	при указанных	
	жении;	движениях.	
	33 (УДКтм-3) -		
	дифференциальные		
	уравнения движе-		
	ния точки относи-		
	тельно инерциаль-		
	ной и неинерци-		
	альной системы		
	координат; общие		
	теоремы динамики,		
	основные понятия		

и принципы анали-	
тической механики	
(принцип Далам-	
бера, принцип воз-	
можных переме-	
щений)	

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина(модуль) «Теоретическая механика» изучается на 2 курсе в 3 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Формирование компетенции *УДКм* основывается на знаниях, полученных при изучении дисциплин математика, физика.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зачетных единиц, 144 академических часов.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 3.

Таблица 3 – Объем дисциплины (модуля) по видам учебных занятий

	Всего академических часов		
Объем дисциплины	Очная форма обучения		
Общая трудоемкость дисциплины	144		
Контактная аудиторнаяработа обучающихся с преподавате- лем (по видам учебных занятий), всего			
В том числе:	108		
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	34		
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	34		
Самостоятельная работа обучающихся иконтактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационнообразовательной среде вуза	40		

	Всего академических
062 014 2440444	часов
Объем дисциплины	Очная форма
	обучения
Промежуточная аттестация обучающихся	36

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Таблица 4 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Компонент учебного плана Разд	Трудоем- кость (в часах) цел 1 Стата	Форма проведе- ния ика Традици-	Планиру тролируе таты (Компетенции	уемые (кон- мые) резуль- освоения Знания, умения, навыки
дачи статики. Связи и их реакции.			онная	3	Ктм-3)
Системы сходящихся сил	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	31 (УД- Ктм-3)
Плоская си- стема сходя- щихся сил	Практическое заня- тие	2	Традици- онная	УДКтм- 3	У1 (УД- Ктм-3)
Системы про- извольно рас- положенных сил	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	31 (УД- Ктм-3)
Плоская си- стема произ- вольно распо- ложенных сил	Практическое заня- тие	2	Традици- онная	УДКтм- 3	У1 (УД- Ктм-3)
Фермы	Лекция	2	Традици- онная	УДКтм- 3	31 (УД- Ктм-3)
Определение усилий в стержнях ферм	Практическое заня- тие	2	Традици- онная	УДКтм- 3	У1 (УД- Ктм-3)
Центр тяжести	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	31 (УД- Ктм-3)
Простран- ственная си- стема сходя- щихся сил	Практическое заня- тие	2	Традици- онная	УДКтм-	У1 (УД- Ктм-3)

Наименование разделов, тем и	Компонент	Трудоем-	Форма	тролируе	уемые (кон- мые) резуль- освоения
содержание материала	учебного плана	кость (в часах)	проведе- ния	Компе- тенции	Знания, умения, навыки
Рычаг. Устойчивочть при опрокидывании. Коэффициент устойчивости	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	31 (УД- Ктм-3)
Простран- ственная си- стема произ- вольно распо- ложенных сил	Практическое заня- тие	2	Традици- онная	УДКтм-	У1 (УД- Ктм-3)
Трение	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	31 (УД- Ктм-3)
Определение положения центра тяжести	Практическое заня- тие	2	Традици- онная	УДКтм- 3	У1 (УД- Ктм-3)
	Самостоятельная работа обучающихся (подготовка к практическим занятиям)	5	Выполнение заданий	УДКтм-	Н1 (УД- Ктм-3)
	Самостоятельная работа обучающихся (изучение теоретических разделов дисциплины)	10	Чтение основной и дополнительной литературы	УДКтм-	Н1 (УД- Ктм-3)
Текущий контроль по разделу 1			РГР (зада- ча 1)	УДКтм-	У1 (УД- Ктм-3); 31 (УД- Ктм-3); H1 (УД- Ктм-3)
ИТОГО	Лекции	14	-	-	-
по разделу 1	Практические занятия	12	-	-	-
	Самостоятельная работа обучающихся	15	-	-	-
	Разде	л 2 Кинема	гика	1	
Кинематика точки	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	32 (УД- Ктм-3);
Кинематиче- ские характе- ристики точки	Практическое занятие	2	Традици- онная	УДКтм- 3	У2 (УД- Ктм-3);

Наименование разделов, тем и содержание материала	Компонент учебного плана	Трудоем- кость (в часах)	Форма проведе- ния	тролируе	уемые (кон- мые) резуль- освоения Знания, умения,
Простейшие движения тела	Лекция	2	Традици- онная	УДКтм- 3	навыки 32 (УД- Ктм-3);
Вращательное движение твердого тела	Практическое занятие	2	Традици- онная	УДКтм-	У2 (УД- Ктм-3);
Плоскопарал- лельное дви- жение тела	Лекция	2	Традици- онная	УДКтм- 3	32 (УД- Ктм-3);
Скорости и ускорения точек плоской фигуры, уравнения движения	Практическое занятие	2	Традици- онная	УДКтм- 3	У2 (УД- Ктм-3);
Сложное дви- жение точки	Лекция	2	Традици- онная	УДКтм- 3	32 (УД- Ктм-3);
Определение абсолютной скорости и абсолютного ускорения точки	Практическое занятие	2	Традици- онная	УДКтм-	У2 (УД- Ктм-3);
Сферицеское и свободное движение тела	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	32 (УД- Ктм-3)
Сложное дви- жение твердого тела	Практическое занятие	2	Традици-	УДКтм- 3	У2 (УД- Ктм-3);
	Самостоятельная работа обучающихся (подготовка к практическим занятиям)	5	Выполне- ние зада- ний	УДКтм- 3	Н2 (УД- Ктм-3);
	Самостоятельная работа обучающихся (изучение теоретических разделов дисциплины)	10	Чтение основной и дополнительной литературы	УДКтм-	Н2 (УД- Ктм-3);
Текущий контроль по разделу 2			РГР (зада- ча 2)	УДКтм- 3	У2 (УД- Ктм-3); 32 (УД- Ктм-3); H2 (УД-

Наименование	TC.	Трудоем-	Форма	Планируемые (контролируемые) результаты освоения	
разделов, тем и содержание материала	Компонент учебного плана	кость (в часах)	проведе- ния	Компе-	Знания, умения, навыки
					Ктм-3)
ИТОГО	Лекции	10	-		
по разделу 2	Практические занятия	10	-		
	Самостоятельная работа обучающихся	15	-		
		ел 3 Динамі	ика	1	
Дифференци- альные урав- нения точки в инерциальной и неинерци- альной систе- мах отсчета	Лекция	2	Интерак- тивная (презента- ция)	УДКтм-	33 (УД- Ктм-3);
Динамика сво- бодной мате- риальной точки	Практическое заня- тие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);
Колебательное движение ма- териальной точки	Лекция	2	Традици- онная	УДКтм- 3	33 (УД- Ктм-3);
Прямолиней- ные колебания материальной точки	Практическое занятие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);
Динамика от- носительного движения точ- ки	Лекция	2	Традици- онная	УДКтм- 3	33 (УД- Ктм-3);
Теорема о движении цен- тра масс.	Практиеское занятие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);
Работа. Теорема об изменении кинетической энергии	Лекция	2	Традици- онная	УДКтм- 3	33 (УД- Ктм-3);
Теорема об изменени кинетической энергии механической системы	Практическое занятие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);
Принцип Да- ламбера	Практическое занятие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);

Наименование разделов, тем и содержание	Компонент учебного плана	Трудоем- кость (в часах)	Форма проведе- ния	тролируе таты (Компе-	уемые (кон- мые) резуль- освоения Знания,
материала		,		тенции	умения, навыки
Аналитическая динамика	Лекция	2	Интерак- тивная (презента- ция)	УДКтм- 3	33 (УД- Ктм-3);
Принцип воз- можных пере- мещений	Практическое занятие	2	Традици- онная	УДКтм- 3	У3 (УД- Ктм-3);
	Самостоятельная работа обучающихся (подготовка к практическим занятиям)	5	Выполнение заданий	УДКтм-	Н3 (УД- Ктм-3);
	Самостоятельная работа обучающихся (изучение теоретических разделов дисциплины)	5	Чтение основной и дополнительной литературы	УДКтм- 3	Н3 (УД- Ктм-3);
Текущий контроль по разделу 3			РГР (зада- ча 3)	УДКтм- 3	У3 (УД- Ктм-3); 33 (УД- Ктм-3); Н3 (УД- Ктм-3)
ИТОГО	Лекции	10	-	-	-
по разделу 2	Практические занятия	12	-	-	-
	Самостоятельная работа обучающих- ся	10	-	-	-
Промежуточная по дисциплине	аттестация — — — — — — — — — — — — — — — — — — —	36	экзамен	УДКтм- 3	31 (УД- Ктм-3); 32 (УД- Ктм-3); 33 (УД- Ктм-3); H1 (УД- Ктм-3); H2 (УД- Ктм-3); H3 (УД- Ктм-3); У1 (УД- Ктм-3); У2 (УД- Ктм-3);

Наименование разделов, тем и содержание материала	в, тем и Компонент кание учебного плана		Форма проведе- ния	тролируе	уемые (кон- мые) резуль- освоения Знания, умения, навыки УЗ (УД- Ктм-3);
ИТОГО	Лекции	34	-	-	-
по дисци- плине	Практические занятия	34	-	-	-
	Самостоятельная работа обучающихся	40	-	-	-

ИТОГО: общая трудоемкость дисциплины 144 часов, в том числе с использованием активных методов обучения 18 часов

6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся, осваивающих дисциплину «Теоретическая механика», состоит из следующих компонентов: изучение теоретических разделов дисциплины; подготовка к практическим занятиям; подготовка и оформление расчётно-графической работы.

Отчёт по расчётно-графическая работа выполняется в виде пояснительной записки подготовленной на компьютере. Пояснительная записка должна содержать подробную постановку задач, расчётную и графическую часть с необходимыми комментариями по ходу решения задач. Титульный лист к пояснительной записке делается один на все три задачи. Образец титульного листа приведён в РД ФГБОУ ВО «КнАГУ» 013-2016.

Для успешного выполнения всех разделов самостоятельной работы учащимся рекомендуется использовать следующее учебно-методическое обеспечение:

- 1. Мещерский И.В. Сборник задач по теоретической механике. М.: Наука, 2005.
- 2. Сборник заданий для курсовых работ по теоретической механике. А.А. Яблонский, С.С. Норейко и др. Санкт-Петербург: Лань, 2006.
- 3. Кирсанов М.Н. Теоретическая механика. Решебник под ред. А.И. Кириллова. М.: Физматлит, 2008.

Рекомендуемый график выполнения самостоятельной работы представлен в таблице 5.

Общие рекомендации по организации самостоятельной работы:

Время, которым располагает студент для выполнения учебного плана, складывается из двух составляющих: одна из них - это аудиторная работа в вузе по расписанию занятий, другая - внеаудиторная самостоятельная работа. Задания и материалы для самостоятельной работы выдаются во время учебных занятий по расписанию, на этих же занятиях преподаватель осуществляет контроль за самостоятельной работой, а также оказывает помощь студентам по правильной организации работы.

Чтобы выполнить весь объем самостоятельной работы, необходимо заниматься по 1 - 3 часа ежедневно. Начинать самостоятельные внеаудиторные занятия следует с первых же дней семестра.

Начиная работу, не нужно стремиться делать вначале самую тяжелую ее часть, надо выбрать что-нибудь среднее по трудности, затем перейти к более трудной работе. И напоследок оставить легкую часть, требующую не столько больших интеллектуальных усилий, сколько определенных моторных действий (построение графиков и т.п.).

Следует правильно организовать свои занятия по времени: 50 минут - работа, 5-10 минут - перерыв; после 3 часов работы перерыв - 20-25 минут. Иначе нарастающее утомление повлечет неустойчивость внимания. Очень существенным фактором, влияющим на повышение умственной работоспособности, являются систематические занятия физической культурой. Организация активного отдыха предусматривает чередование умственной и физической деятельности, что полностью восстанавливает работоспособность человека.

Таблица 5 – Рекомендуемый график выполнения самостоятельной работы

Вид									Час	сов в	неде	елю	•	•	•		•	Ито-
самостоятельной	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	го по
работы																		ви-
																		дам работ
Изучение теоре-																		
тических разде-		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		15
лов дисциплины																		
Подготовка к																		
практическим		1		1		1		1	1	1	1	1		1		1		10
занятиям																		
Выполнение РГР			1	1	1	1	1	1	1	2	1	1	1	1	1	1		15
Итого 3 семестр		2	2	3	2	3	2	3	3	4	3	3	2	3	2	3		40

7 Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 6 – Паспорт фонда оценочных средств

Контролируемые	Код контролируе-	Наименование	
разделы (темы)	мой компетенции	оценочного	Показатели оценки
дисциплины	(или ее части)	средства	
Статика	31 (УДКтм-3) У1 (УДКтм-3);	РГР (задача 1), экзамен	Определяет реакции опор и внутренние усилия в элементах конструкции. Владеет навыками со-
	Н1 (УДКтм-3)	JKJUMOII	ставления уравнений статики
Кинематика	32 (УДКтм-3); У2 (УДКтм-3); Н2 (УДКтм-3)	РГР (задача 2), экзамен	Определяет кинематические характеристики движения твердого тела и системы твердых тел.
	33 (УДКтм-3);		Определяет динамические и кинематические харак-
Динамика	У3 (УДКтм-3);	РГР (задача 3), экзамен	теристики движения си- стемы тел. Определяет работу и кинетическую
	Н3 (УДКтм-3)		энергию поступательного, вращательного и плоско- го движения тела

Промежуточная аттестация проводится в форме экзамена

Экзамен проводится в *устной* форме по билетам. Билет содержит три теоретических вопроса и две задачи. Экзаменационная оценка выставляется с учетом результатов текущего контроля и промежуточного контроля, выполнение заданий всех практических занятий и расчетно-графической работы (РГР).

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, представлены в виде технологической карты дисциплины (таблица 7).

Наименование оценочного средства	Сроки оценива- ния	Шкала оценивания	Критерии оценивания
•	Про		тация в форме экзамена или дифференцированного отчета
РГР (задача 1)	6 неделя	10 баллов	10 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
РГР (задача 2)	10 неделя	20 баллов	20 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 15 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 10 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
РГР (задача 3)	16 неделя	20 баллов	20 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 15 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 10 баллов - Студент полностью выполнил задание, но допустил существенные неточно-

Наименование оценочного средства	Сроки оценива- ния	Шкала оценивания	Критерии оценивания
			сти и грубые ошибки, не проявил умения правильно интерпретировать полученные ре-
			зультаты, качество оформления имеет недостаточный уровень.
			0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный
			уровень умений и навыков, а также неспособен пояснить полученный результат.
Текущая аттестация	Я	50 баллов	-
Экзамен		50 баллов	-
		Теоретический во-	Один вопрос:
		прос – оценивание	10 баллов - студент правильно ответил на теоретический вопрос билета. Показал от-
		уровня усвоенных знаний	личные знания в рамках усвоенного учебного материала. Ответил на все дополнитель- ные вопросы.
		(в билете 3 вопро-	7 баллов - студент ответил на теоретический вопрос билета с небольшими неточно-
		са по 10 баллов)	стями. Показал хорошие знания в рамках усвоенного учебного материала. Ответил на
		,	большинство дополнительных вопросов.
			4 балла - студент ответил на теоретический вопрос билета с существенными неточностями. Показал удовлетворительные знания в рамках усвоенного учебного материала.
			При ответах на дополнительные вопросы было допущено много неточностей.
			0 баллов - при ответе на теоретический вопрос билета студент продемонстрировал
			недостаточный уровень знаний. При ответах на дополнительные вопросы было допу-
			щено множество неправильных ответов.
		Практическая	Одна задача:
		задача —	10 баллов - студент правильно выполнил практическое задание билета. Показал отлич-
		оценивание уров-	ные умения и навыки в рамках усвоенного учебного материала. Ответил на все допол-
		ня усвоенных	нительные вопросы.
		умений и навы-	8 баллов - студент выполнил практическое задание билета с небольшими неточностя-
		ков	ми. Показал хорошие умения и навыки в рамках усвоенного учебного материала. Отве-
		(в билете 2 задачи	тил на большинство дополнительных вопросов.
		по 10 баллов)	5 баллов - студент выполнил практическое задание билета с существенными неточно-
			стями. Показал удовлетворительные умения и навыки в рамках усвоенного учебного ма-
			териала. При ответах на дополнительные вопросы было допущено много неточностей.
			0 баллов - n ри выполнении практического задания билета студент продемонстрировал

Наименование оценочного средства	Сроки оценива- ния	Шкала оценивания	Критерии оценивания			
			недостаточный уровень умений. При ответах на дополнительные вопросы было допушено множество неправильных ответов.			
Итого		100 баллов	-			

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов "неудовлетворительно" (недостаточный уровень для текущей аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов "удовлетворительно" (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов "хорошо" (средний уровень);
- 85 100 % от максимально возможной суммы баллов "отлично" (высокий (максимальный) уровень)

Задания для текущего контроля

В течение 3-го семестра студенты должны выполнить 1 расчётнографическое задание, состоящее из 3 задач.

Задачи выдаются из учебного пособия: Сборник заданий для курсовых работ по теоретической механике: Учебное пособие под ред. А.А. Яблонского. СПб.: Лань, 2006. Каждое задание содержит 30 вариантов. Номер варианта выдаётся преподавателем, ведущим практические занятия, например, по списку в журнале учебной группы или шифру. Примеры выполнения заданий содержатся в учебном пособии.

Расчётно-графическая работа

Задача № 1.

Тема задачи: «Определение реакций опор составной конструкции (система двух тел)».

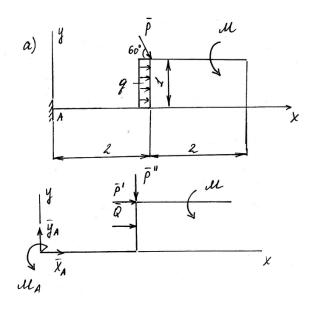
Решение систем линейных алгебраических уравнений равновесия должно быть выполнено аналитическим методом и численным методом с помощью компьютера.

Срок выполнения: выдача 3 неделя – защита 6 неделя.

Пример выполнения задания.

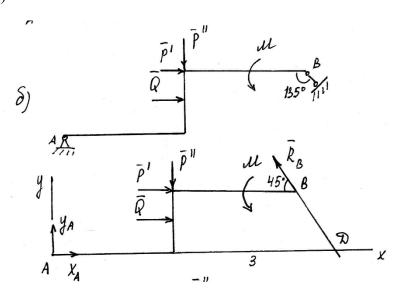
Задача №1 Определение реакций опор твердого тела

Дано: Р=20 кН; М=4 кНм; q=3кН/м.

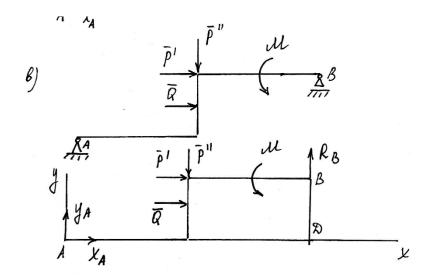

Определить: реакцию У_А.

Решение:

Разложим силу \overline{P} на составляющие: $P' = P \cos 60 = 10(\kappa H);$ $P'' = P \sin 60 = 17,32(\kappa H).$


Распределенную нагрузку заменим равнодействующей $Q = q \cdot 1 = 3$ (кH).

Cхема (a)


$$\sum Y = 0;$$

$$Y_A - P'' = 0; Y_A = P'' = 17,32(\kappa H).$$

Схема (б)

$$\begin{split} & \sum M_{\mathcal{A}}(F_i) = 0; \\ & -Y_A \cdot 5 - Q \cdot 0, 5 - P' \cdot 1 + P'' \cdot 3 + M = 0; \\ & Y_A = \frac{-Q \cdot 0, 5 - P' \cdot 1 + P'' \cdot 3 + M}{5} = \frac{-1, 5 - 10 + 17, 32 \cdot 3 + 4}{5} = 8,89(\kappa H) \end{split}$$

Схема (в)

$$\sum M_{\mathcal{A}}(F_i) = 0;$$

$$-Y_A \cdot 4 - Q \cdot 0, 5 - P' \cdot 1 + P'' \cdot 2 + M = 0;$$

$$Y_A = \frac{-Q \cdot 0, 5 - P' \cdot 1 + P'' \cdot 2 + M}{4} = \frac{-1, 5 - 10 + 17, 32 \cdot 2 + 4}{4} = 6,79(\kappa H)$$

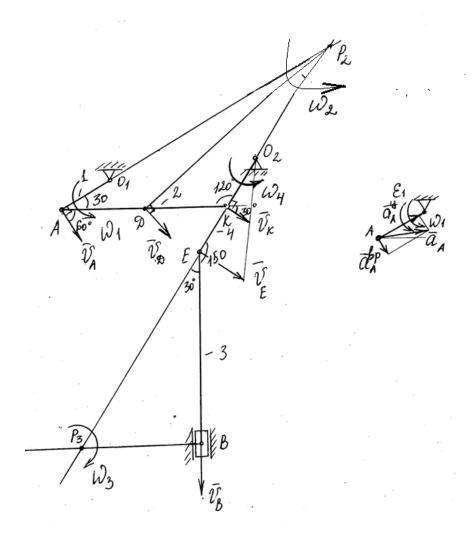
Для случая (в) исследуемая реакция наименьшая. Определим остальные реакции.

$$\begin{split} \sum X &= 0; \\ X_A + Q + P' &= 0; \\ X_A &= -Q - P' = -3 - 10 = -13(\kappa H); \\ \sum \mathbf{M}_{\mathbf{A}}(F_i) &= 0; \\ -Q \cdot 0.5 - P' \cdot 1 - P'' \cdot 2 + M + R_B \cdot 4 = 0; \\ R_B &= \frac{Q \cdot 0.5 + P' \cdot 1 + P'' \cdot 2 - M}{4} = \frac{1.5 + 10 + 17.32 \cdot 2 - 4}{4} = 10.54(\kappa H). \end{split}$$

Задача № 2.

Тема задачи: «Кинематический анализ плоского механизма».

Срок выполнения: выдача 7 неделя – защита 10 неделя.


Пример выполнения задания

Задача №2 Кинематический анализ плоского механизма

Дано:

$$l_{1} = 0.4\text{m}; l_{2} = 1.2\text{m}; l_{3} = 1.4\text{m}; l_{4} = 0.8\text{m}; \varepsilon_{1} = 10c^{-2}; \alpha = 90^{\circ}; \beta = 150^{\circ}; \gamma = 120^{\circ}; \varphi = 90^{\circ}; \theta = 30^{\circ}; \omega_{4} = 5(1/c).$$

Определить: $V_A, V_D; \omega_3, a_A$...

Решение

- 1. Вычертим схему в масштабе, согласно заданных углов.
- 2. Определим $V_A, V_D; \omega_3$

Т.к. звено 4 совершает вращательное движение, то

$$\begin{split} V_E &= \omega_4 \cdot l_4; \\ V_K &= \omega_4 \cdot 0.5 l_4; \\ V_E &= 5 \cdot 0.8 = 4 (\textit{m/c}); \\ V_K &= 5 \cdot 0.4 = 2 (\textit{m/c}). \end{split}$$

Т.к. звено 2 совершает плоское движение, то по свойству проекций скоростей точек $V_{\scriptscriptstyle K} \cos 30 = V_{\scriptscriptstyle A} \cos 60$, то

$$V_A = \frac{V_K \cos 30}{\cos 60};$$

 $V_A = \frac{2 \cdot \cos 30}{\cos 60} = 3,46 \text{m/c}.$

Точка P_2 – мгновенный центр скоростей звена 2, тогда

$$\begin{aligned} V_K &= \omega_2 K P_2; \\ V_D &= \omega_2 D P_2. \end{aligned}$$

Из ΔAP_2K - равнобедренного $KP_2 = l_2 = 1,2M$;

$$DP_2 = \sqrt{0.6^2 + 1.2^2 + 2 \cdot 0.6 \cdot 1.2 \cos 120} = 1.04 \text{M};$$

Тогда

$$\omega_{2} = \frac{V_{K}}{KP_{2}};$$

$$V_{D} = \frac{V_{K}}{KP_{2}}DP_{2};$$

$$V_{D} = \frac{2 \cdot 1,04}{1.2} = 1,73 \text{ m/c}.$$

Точка Р₃ – мгновенный центр скоростей звена 3, тогда

$$V_E = \omega_3 E P_3$$
;

Из ΔEP_3B - прямоугольного $\cos 30 = \frac{l_3}{EP_3}$; $EP_3 = \frac{l_3}{\cos 30}$.

Тогда

$$\begin{split} \omega_3 &= \frac{V_E}{EP_3} = \frac{V_E \cos 30}{l_3}; \\ \omega_3 &= \frac{4\cos 30}{1,4} = 2,47(1/c). \\ \omega_2 &= \frac{V_D}{DP_2}; \\ V_A &= \frac{V_D}{DP_2} AP_2; \\ V_E &= \frac{V_D}{DP_2} EP_2; \\ \omega_2 &= \frac{6}{1,04} = 5,77(1/c); \\ V_A &= \frac{6}{1,04} \cdot 1,2 = 6,92 \, \text{m/c}; \\ V_E &= \frac{6}{1,04} \cdot 1,2 = 6,92 \, \text{m/c}. \end{split}$$

3. Ускорение a_A .

Для т. А
$$\overline{a}_A = \overline{a}_{A\tau} + \overline{a}_{An}$$
, где $a_{A\tau} = l_1 \cdot \varepsilon_1$, $a_{An} = l_1 \cdot \omega_1^2$.

Угловая скорость звена 1 - $\omega_{\rm l} = \frac{V_{\scriptscriptstyle A}}{l_{\scriptscriptstyle 1}}$.

Тогда

$$a_{A\tau} = 0.4 \cdot 10 = 4 M/c^2;$$

$$a_{An} = 0.4 \cdot \left(\frac{3,46}{0.4}\right)^2 = 29.9 \,\text{m/c}^2$$

Полное ускорение $a_A = \sqrt{a_{A\tau}^2 + a_{An}^2} = \sqrt{4^2 + 29.9^2} = 30.17$ (см/с²).

Задача № 3.

Тема задачи: «Применение теоремы об изменении кинетической энергии к изучению движения механической системы».

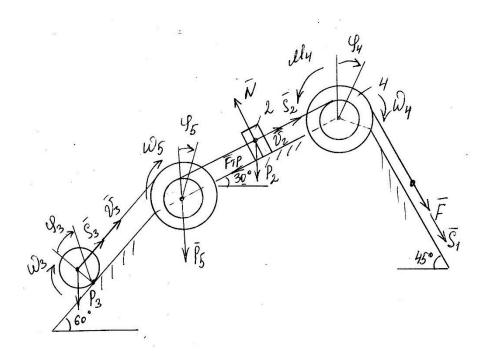
Срок выполнения: выдача 13 неделя – защита 16 неделя.

Пример выполнения задания

Задача 3 Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Дано:
$$f = 0.1$$
, $R_4 = 0.3$ м, $r_4 = 0.1$ м, $R_5 = 0.2$ м, $r_5 = 0.1$

$$m_1 = 0 \kappa \varepsilon; m_2 = 4; m_3 = 6 \kappa \varepsilon; m_4 = 0; m_5 = 10 \kappa \varepsilon; M_4 = 0.6 Hm; F = 30(8 + 3S)H.$$


Определить: ω_5 , если $S_1 = 0.8 M$

Решение

1. Рассмотрим движение неизменяемой механической системы, состоящей из тел, соединенных нитями. Изобразим действующие на систему внешние силы: активные F, P_1 , P_3 , P_5 ,сила трения $F_{\tau p1}$ и момент сопротивления M_4 .

Для определения ω_5 воспользуемся теоремой об изменении кинетической энергии:

$$T - T_0 = \sum A_k^e$$

2. Определяем Т и T_0 . Так как в начальный момент система находилась в покое, то T_0 =0. Величину Т найдем как сумму кинетических энергии всех тел системы

$$T=T_2+T_3+T_5$$
.

Учитывая, что тело 3 движется плоскопараллельно, тело 2 – поступательно, а тело 5 вращается вокруг неподвижной оси, получим

$$T_3 = \frac{m_3 V_{C3}^2}{2} + \frac{I_3 \omega_3^2}{2}, T_2 = \frac{m_2 V_2^2}{2}, T_5 = \frac{I_5 \omega_5^2}{2}.$$

Все входящие скорости нужно выразить через искомую ω_5 .

$$V_2 = \omega_5 r_5$$
, $V_{C3} = \omega_5 R_5 = \omega_3 R_3$;, $\omega_3 = \frac{\omega_5 R_5}{R_2}$.

Кроме того, моменты инерции имеют значения

$$I_3 = \frac{m_3 R_3^2}{2}, I_5 = m_5 R_5^2.$$

Подставив величины, а затем окончательно получим

$$T = \omega_5^2 \left(\frac{m_2 r_5^2}{2} + \frac{m_5 R_5^2}{4} + \frac{m_3 R_5^2}{2} + \frac{1}{2} \frac{m_3 R_5^2}{2} \right);$$

$$T = \omega_5^2 \left(\frac{4 \cdot 0.1^2}{2} + \frac{10 \cdot 0.2^2}{4} + \frac{6 \cdot 0.2^2}{2} + \frac{1}{2} \frac{6 \cdot 0.2^2}{2} \right) = 0.3\omega_5^2$$

3. Найдем сумму работ всех внешних сил при перемещении, которое будет иметь система, когда центр масс груза 1 пройдет путь s_1 .

$$A(\overline{F}) = \int_{0}^{s1} F ds = \int_{0}^{s1} 30(8+3s) ds = 30(8s_{1}+1.5s_{1}^{2}) = 30(8\cdot0.8+1.5\cdot0.8^{2}) = 220.8 \, \text{Дж.};$$

$$A(\overline{P}_{2}) = -P_{2}s_{2}\sin 30^{\circ} = -m_{2}gs_{2}\sin 30^{\circ} = -m_{2}g\frac{S_{1}r_{4}}{R_{4}}\sin 30 = -4\cdot10\cdot\frac{0.8\cdot0.1}{0.3}\sin 30^{\circ} = -5.33 \, \text{Дж.};$$

$$A(\overline{P}_{3}) = -P_{3}s_{3}\sin 60^{\circ} = -m_{3}gs_{3}\sin 60^{\circ} = -m_{3}g\cdot\frac{S_{1}r_{4}R_{5}}{R_{4}r_{5}}\sin 60 = -6\cdot10\cdot0.8\cdot\frac{0.2}{0.3}\sin 60^{\circ} = -27.71 \, \text{Дж.};$$

$$A(\overline{F}_{mp2}) = -F_{mp2}s_{2} = -fN_{2}s_{2} = -fm_{2}gs_{2}\cos 30^{\circ} = -fm_{2}g\frac{S_{1}r_{4}}{R_{4}}\cos 30^{\circ} = 0.1\cdot4\cdot10\cdot\frac{0.8\cdot0.1}{0.3}\cos 30 = -0.92 \, \text{Дж.}$$

$$A(M_{4}) = -M_{4}\varphi_{4} = -M_{4}\frac{s_{1}}{R_{4}} = -0.6\cdot\frac{0.8}{0.3} = -1.6 \, \text{Дж.}.$$

Суммируем найденные работы

$$\sum A_k^e = 185,24$$
Дж.

Тогда

$$0.3\omega_5^2 = 185.24;$$

 $\omega_5 = 24.851/c.$

Примечание. На усмотрение ведущего преподавателя допускается выдавать задания аналогичные по тематике и трудоёмкости, из других учебнометодических пособий.

Вопросы для защитыРГР.

- 1. Сформулируйте тему и задачи данной расчётно-графической работы.
- 2. Какие допущения приняты при решении поставленных в РГР задач?
- 3. В какой последовательности решаются задачи статики на равновесие?
- 4. Объясните, как направлялись реакции связей на расчётных схемах?
- 5. Запишите известные вам формы необходимых и достаточных уравнений равновесия для произвольной плоской системы сил.
- 6. Какие механические системы являются статически неопределимыми?
- 7. Сформулируйте теорему Вариньона о моменте равнодействующей для случая произвольной плоской системы сил.
- 8. В каком случае оправданно применение теоремы Вариньона о моменте равнодействующей?

- 9. Найдите момент силы, указанной преподавателем на расчётной схеме относительно заданной им же точки.
- 10. Как изменится состояние твёрдого тела, если пару сил перенести в плоскости пары в пределах данного тела?
- 11. Сравните моменты пары сил относительно двух точек, указанных преподавателем на расчетной схеме.
- 12. Сделайте проверку правильности решения, составив и решив одно, наиболее эффективное на Ваш взгляд, проверочное уравнение.
- 13. Какое движение совершает звено указанное преподавателем на кинематической схеме механизма? Дайте определение этого движения.
- 14. Что называется мгновенным центром скоростей?
- 15. Как определить положение мгновенного центра скоростей?
- 16. Какое движение совершает звено, если его мгновенный центр скоростей находится в бесконечности?
- 17. Как найти величину и направление угловой скорости звена указанного преподавателем на кинематической схеме механизма?
- 18. Изобразите вектор скорости точки, указанной преподавателем на кинематической схеме механизма.
- 19. Сравните по величине скорости двух точек, указанных преподавателем на кинематической схеме механизма.
- 20. Сформулируйте теорему о проекциях скоростей двух точек твёрдого тела на ось проходящую через эти точки.
- 21. Объясните направление каждого из векторов ускорений, изображённых на кинематической схеме механизма.
- 22. По каким формулам вычислялись величины ускорений, векторы которых показаны на кинематической схеме механизма?
- 23. В чём заключается аналитический способ определения ускорения точки звена, совершающего плоское движение?
- 24. В чём заключается графический способ определения ускорения точки звена, совершающего плоское движение?
- 25. Сравните по величине ускорения двух точек, указанных преподавателем на кинематической схеме механизма.
- 26. Как найти величину и направление углового ускорения звена?
- 27. Как вращается звено, указанное преподавателем на кинематической схеме механизма (ускоренно, замедленно или равномерно)?
- 28. Какие допущения приняты при решении задач, поставленных в РГР?
- 29. Сформулируйте теорему об изменении кинетической энергии механической системы. Запишите соответствующую формулу.
- 30. По какой формуле находится кинетическая энергия материальной точки?
- 31. В каких случаях кинетическая энергия материальной точки равна нулю?
- 32. Как в данной работе находилась кинетическая энергия механической системе в начальном и конечном положениях?

- 33. Как найти кинетическую энергию твёрдого тела, указанного преподавателем на расчётной схеме механической системы?
- 34. Как найти работу силы, указанной преподавателем на расчётной схеме механической системы?
- 35. Найти соотношение между перемещениями двух точек, указанных преподавателем на расчётной схеме механической системы.
- 36. В каких случаях работа силы равна нулю?
- 37. Чему равна работа силы приложенной в мгновенном центре скоростей?
- 38. Как найти работу пары сил?

Задания для промежуточной аттестации

Контрольные вопросы к экзамену

Раздел 1. Статика.

- 1. Аксиомы статики. Следствие о переносе силы вдоль её линии действия.
- 2. Теорема об эквивалентности системы сходящихся сил одной силе. Аналитический способ определения равнодействующей. Условия равновесия системы сходящихся сил.
- 3. Момент силы относительно точки.
- 4. Момент силы относительно оси. Зависимость между моментами силы относительно оси и точки на этой оси.
- 5. Пара сил. Теорема о сумме моментов сил пары. Момент пары сил.
- 6. Пара сил. Свойства пар. Сложение пар.
- 7. Главный вектор и главный момент произвольной системы сил. Аналитическое определение главного вектора и главного момента.
- 8. Приведение силы к точке. Теорема Пуансо об эквивалентности произвольной системы сил силе и паре.
- 9. Влияние изменения центра приведения на главный момент.
- 10. Частные случаи приведения произвольной системы сил.
- 11. Теорема Вариньона о моменте равнодействующей.
- 12. Уравнения равновесия механической системы под действием произвольной системы сил.
- 13. Уравнения равновесия произвольной плоской системы сил, системы параллельных сил.
- 14. Центр параллельных сил. Сложение параллельных сил.
- 15. Центр тяжести тела. Координаты центра тяжести.
- 16.Способы определения координат центров тяжести однородных тел.
- 17. Законы трения скольжения. Угол и конус трения.
- 18. Трение качения.

Раздел 2. Кинематика.

- 1. Векторный и координатный способы задания движения точки. Определение скорости и ускорения точки при векторном и координатном способах задания движения.
- 2. Естественный способ задания движения точки. Определение скорости и ускорения точки при естественном способе задания движения.
- 3. Поступательное движение твёрдого тела. Траектории, скорости и ускорения точек тела при поступательном движении.
- 4. Вращательное движение твёрдого тела вокруг неподвижной оси. Закон движения, угловая скорость и угловое ускорение тела. Векторы угловой скорости и углового ускорения твёрдого тела.
- 5. Распределение скоростей и ускорений точек тела при вращательном движении.
- 6. Плоское движение твёрдого тела. Закон движения. Распределение скоростей точек тела при плоском движении. Формула сложения скоростей. Теорема о проекциях скоростей.
- 7. Аналитический и геометрический способы нахождения скоростей точек тела при плоском движении. План скоростей и его свойства.
- 8. Мгновенный центр скоростей и его свойства. Способы нахождения положения мгновенного центра скоростей.
- 9. Распределение ускорений точек тела при плоском движении. Формула сложения ускорений.
- 10. Аналитический и геометрический способы нахождения ускорений точек тела при плоском движении. План ускорений.
- 11.Мгновенный центр ускорений и его свойства. Способы нахождения мгновенного центра ускорений.
- 12. Сферическое движение твёрдого тела. Углы Эйлера. Уравнения сферического движения тела.
- 13. Теорема Эйлера о перемещении твёрдого тела с закреплённой точкой. Мгновенная ось вращения. Угловая скорость тела.
- 14. Распределение скоростей точек тела при сферическом движении.
- 15. Угловое ускорение твёрдого тела при сферическом движении. Распределение ускорений точек тела при сферическом движении.
- 16.Сложное движение точки. Теорема сложения скоростей.
- 17. Сложное движение точки. Теорема сложения ускорений.
- 18. Ускорение Кориолиса.

Раздел 3. Динамика.

- 1. Аксиомы динамики. Инерциальные системы отсчёта. Дифференциальные уравнения движения материальной точки.
- 2. Две задачи динамики материальной точки. Постановка и решение.
- 3. Неинерциальные системы отсчёта. Уравнение относительного движения материальной точки. Переносная и кориолисова силы инерции. Принцип относительности Галилея.

- 4. Теорема о движении центра масс механической системы и следствия из теоремы.
- 5. Количество движения механической системы. Импульс силы. Теорема об изменении количества движения механической системы. Следствия из теоремы.
- 6. Кинетический момент механической системы относительно точки и оси. Теорема об изменении кинетического момента механической системы относительно неподвижной точки. Следствия из теоремы. Элементарная и полная работа силы. Мощность силы. Мощность пары сил.
- 7. Работа силы тяжести, работа силы упругости, работа силы приложенной к вращающемуся твёрдому телу, работа пары сил.
- 8. Кинетическая энергия материальной точки и механической системы. Теорема Кенига. Кинетическая энергия твёрдого тела при различных видах его движения.
- 9. Теорема об изменении кинетической энергии механической системы.
- 10.Потенциальное силовое поле, силовая функция. Работа силы потенциального поля. Потенциальная энергия материальной точки и механической системы. Закон сохранения полной механической энергии.
- 11. Принцип возможных перемещений
- 12. Принцип Даламбера Лагранжа и общее уравнение динамики.

Тематика и примеры экзаменационных задач

№ п/п	Наименование модуля дисциплины	Раздел дис- циплины	Пример задачи
		1. Составле-	Условие задачи: Дано: F=8 kH, M=50 kH·м, q=3 kH/м, ДС=ВС=4 м, АВ=ДЕ=3 м,
		ние уравнений равновений	α=30°. Определить реакции в точках A, C и усилие в стержне ДО.
		сия для про- извольной плоской си- стемы сил (равновесие системы 2-х тел)	F A
1	Статика		Varanus saranus
		2. Составление уравнений равновесия для произвольной пространственной системы сил	Условие задачи: Дано: AN=AB=AC=CE=a, M=2P·a, P – вес каждой плиты. Определить реакции связей в точках A и B, а так усилие в стержне I.
			Условие задачи:
2	Кинематика	3. Кинемати- ка плоского движения твёрдого те- ла	Дано: Угловая скорость ω и угловое ускорение ε кривошипа ОА длиной R ; $AB=r$, $\alpha=90^\circ$. Опреденого на ния мести и α A A B .

			Условие задачи:
			Дано: квадратная пластинка вращается вокруг вертикальной оси согласно уравнению
			ϕ = 0,5 π ·t ² (рад). Вдоль прорези DB, имеющей форму дуги окружности радиусом
		4. Сложное движение точки	$R=4\sqrt{2}$ см, движется точка M по закону DM=S= $\pi\sqrt{2}$ t (см). На момент времени t=1c определить абсолютную скорость и абсолютное ускорение точки M.
			A P P D
			Условие задачи:
			Дано: m - масса шарика M; ω - угловая скорость вращения рам- ки вокруг вертикальной оси.
		5. Динамика	При t=0, X_0 =0, \dot{X}_0 = 0. Трением пренебречь.
3	Динамика	относитель- ного движе- ния матери- альной точки	Определить закон относительного движения шарика М.
		6. Теорема о	Условие задачи:
		движении центра масс механиче- ской систе- мы	Дано: грузы В и Д весом F и Q, соответственно, связаны между собой нерастяжимой нитью, перекинутой через блок A, который установлен на вершине призмы весом Р. Геометрические размеры показаны на рисунке.
		центра масс механиче- ской систе-	собой нерастяжимой нитью, перекинутой через блок рый установлен на вершине призмы весом Р. Геомет

	T							
	Определить	горизонтальное перемещение призмы по гла	дкой					
	горизонталы	ной плоскости при опускании груза В на высот	y h.					
		A A						
		_ //M						
		nkumuninkun						
		<u>a/3</u>						
		<i>a</i>						
		Условие задачи:						
	Дано: призм	иа А весом Q установлена на гладкой горизонт	галь-					
7. Teop		сти. По гладкой наклонной плоскости призмы						
об изме	IIA	угол α с горизонтом, из состояния покоя начи						
нии кол	TITO	-	macı					
ства дви	же-	относительной скоростью U груз B весом Р.						
ния мех	ани- Опреде-	лить скорость і	триз-					
ческой	си- мы А.	R						
стеми	J							
		//////////////////////////////////////						
		Vанарую зачаную:						
		Условие задачи:						
	Дано: вдоль	края однородной круглой платформы радиус	ом R					
	и массой М	1, которая может вращаться вокруг вертикал	ьной					
8. Teop		ет двигаться материальная точка массой т с по						
об изме	· ·	•	0010					
нии кин	инной относ	ительной скоростью U.						
		угловую скорость вращения платформы.						
ческого	110	jo2jio enopoeta apantenim imarqopina.						
мента м		1 z						
ническої		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
стемн	J	M 18						
		R						
		"						
9. Teop	ема	Условие задачи:						
об изме								
нии кин	ети- Дано: механ	ическая система состоит из шкива 1 весом Р	и ра-					
ческой э	ъ	кива 2 весом Q и радиусом г и груза 3 весом F	F, co-					
гии меха		между собой невесомой нерастяжимой ни						
	****	сно считать сплошными однородными дисками						
ческой	CN- TTIKNDDI MOAK	по ститить сплошными однородными дисками	. Cm-					

 T	
стемы	стема начинает движение из состояния покоя под действием пары сил с постоянным моментом М, приложенного к шкиву 1.
	Определить скорость груза в зависимости от высоты его подъ-
	ема h. — 2 — 3 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1
	Условие задачи:
	Дано: шар массой M_1 и радиусом г скатывается без проскальзывания по наклонной под углом α к горизонту плоскости призмы, установленной на гладкой горизонтальной поверхности, которая имеет выступ A .
10. Принцип Даламбера	Определить ускорение центра масс шара и давление призмы на выступ А.
	A
	Условие задачи:
	Дано: Q=20 H; OA= 0,2 м; AB= 0,4 м.
11. Принцип возможных перемещений	Определить величину силы Р при которой механизм в заданном полодиться в жении будет нахоравновесии.
12. Общее уравнение	Условие задачи:
динамики	Дано: шкив 1 массой M_1 катится без проскальзывания вверх по

	наклонной плоскости, составляющий угол α с горизонтом, с помощью неподвижной нерастяжимой нитью, намотанной на шкив 2 массой M_2 , к которому приложена пара сил с постоянным моментом М. Шкивы считать сплошными однородными дисками радиуса г. Определить ускорение центра масс шкива 1 и натяжение нити.
--	---

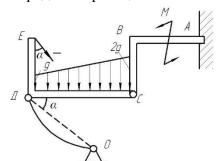
Пример экзаменационного билета:

Министерство образования и науки

Российской федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

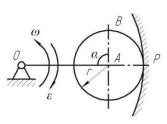

«Комсомольский-на-Амуре государственный университет»

Экзаменационный билет № 27

- 1. Пара сил. Теорема о сумме моментов сил пары. Момент пары сил.
- 2. Векторный способ задания движения
- 3. Принцип Даламбера Лагранжа и общее уравнение динамики.

Задача 1 Дано: F=8 kH, M=50 kH·м, q=3 kH/м, ДС=ВС=4 м, AB=ДЕ=3 м, α =30

Определить реакции в точках А, С и усилие в стержне ДО.


F

Дано: Угловая скорость ω и угловое ускорение ε кривошипа ОА длиной

R; AB=r, α =90°.

Задача 2 Определить, для указанного на рисунке положения механизма, скорости

и ускорения точек А и В.

Утверждаю: зав. кафедрой МАКП

Составил

8 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

8.1 Основная литература

- 1 Бутенин А.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики: T1,2-M.: Наука, 2004.
 - 2. Никитин Н.Н. Курс теоретической механики. М.: Высш. шк., 2003.
 - 3. Мещерский И.В. Сборник задач по теоретической механике. М.: Наука, 2005.
 - 4. Сборник заданий для курсовых работ по теоретической механике. А.А. Яблонский, С.С. Норейко и др. Санкт-Петербург: Лань, 2006.
 - 5. Бать М.Н., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах: Т1,2 Санкт-Петербург: Лань, 2009.

8.2 Дополнительная литература

- 1. Новожилов А.И. Краткий курс теоретической механики: Учеб.пособие/Под ред. В.Н.Филимонова; Владим.гос.ун-т. – Владимир, 2006.
- 2. Новожилов А.И. Задачи по теоретической механике. Методика их решения. Учеб.пособие: Влад.гос.ун-т. Владимир, 2009.
- 3. Кирсанов М.Н. Теоретическая механика. Решебник под ред. А.И. Кириллова. М.: Физматлит, 2008.

9 Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

- 1. Богатова С.В., Бухенский К.В., Лукьянова Г.С. Дифференциальные уравнения. Ряды : Практикум с использованием системы Mathcad : Единое окно доступа к образовательным ресурсам // http://window.edu.ru/resource/455/70455
- 2. Mathcad Application Server (MAS): Он-лайнрасчетыв Mathcad // http://mas.exponenta.ru

10 Методические указания для обучающихся по освоению дисциплины (модуля)

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению расчетнографических работ, выполнению домашних заданий по практическим занятиям.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

Для успешного освоения программы дисциплины "Теоретическая механика" обучающимся рекомендуется придерживаться следующих методических указаний (таблица 7).

Таблица 7 - Методические указания к освоению дисциплины

Компонент учебного	Организация деятельности обучающихся
плана	
Лекции	Написание конспекта лекций: кратко, схематично, последо-
	вательно фиксировать основные положения, формулировки,
	выводы. Помечать важные мысли. Выделять ключевые сло-
	ва, термины, формулы. Делать пометки на вопросах, терми-
	нах, блоках в тексте, которые вызывают затруднения, после
	чего постараться найти ответ в рекомендованной литературе.
	Если ответ не найден, то на консультации обратиться к пре-
	подавателю
Практические занятия	Работа с конспектом лекций, подготовка ответов к контроль-
	ным вопросам, просмотр рекомендуемой литературы, работа
	с текстом, конспектирование основных мыслей и выводов,
	решение задач по алгоритму
Самостоятельное изучение	В процессе самостоятельного изучения разделов дисциплины
теоретических разделов	перед обучающимся ставится задача усвоения теории дисци-
дисциплины	плины, запоминания основных и ключевых понятий изучае-
	мого предмета. Обучающийся составляет краткие конспекты
	изученного материала. В ходе работы студент учится выде-
	лять главное, самостоятельно делать обобщающие выводы
Самостоятельная работа	Для более углубленного изучения темы задания самостоя-
	тельной работы рекомендуется выполнять параллельно с
	изучением данной темы. Информация о самостоятельной ра-
	боте представлена в разделе 6 "Учебно-методическое обес-
	печение самостоятельной работы по дисциплине"
Экзамен	При подготовке к экзамену по теоретической части необхо-
	димо выделить в вопросе главное, существенное (понятия,
	признаки, классификации и пр.), привести примеры, иллю-
	стрирующие теоретические положения. При подготовке к
	экзамену по практической части необходимо пробное вы-
	полнение заданий по предложенному алгоритму, подготовка
	ответов на контрольные вопросы

по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем

С целью повышения качества ведения образовательной деятельности в университете создана электронная информационно-образовательная среда. Она подразумевает организацию взаимодействия между обучающимися и преподавателями через систему личных кабинетов студентов, расположенных на официальном сайте университета в информационнотелекоммуникационной сети "Интернет" по адресу http://student.knastu.ru.

Созданная информационно-образовательная среда позволяет осуществлять:

- фиксацию хода образовательного процесса посредством размещения в личных кабинета студентов отчетов о выполненных заданиях;
- взаимодействие между участниками образовательного процесса посредством организации дистанционного консультирования по вопросам выполнения расчетно-графических заданий.

Процесс обучения сопровождается использованием компьютерных программ: Mathcad, MSWord.

12 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Для реализации программы дисциплины "Теоретическая механика" используется материально-техническое обеспечение, перечисленное в таблице 8.

Таблица 8- Материально-техническое обеспечение дисциплины

Аудито-	Наименова-	Используемое	Назначе-
рия	ние аудито-	оборудование	ние
	рии		оборудова-
	(лаборатории)		ния
с выхо-	Мультимедий-	1 персональный ЭВМ с процессором IntelCore	Проведение
дом в ин-	ный класс	(TM) i3-2130;	лекционных
тернет +		2ДоскаинтерактивнаяTRIUMPHBOARDMULT	и практиче-
локаль-		ITOUCH 78*	ских заня-
ное со-		3 Проектор	тий в виде
единение		BenQ MX518	презента-
			ций