Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теоретическая механика

Направление подготовки	24.03.04 Авиастроение
Направленность (профиль) образовательной программы	Самолетостроение
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2019
Форма обучения	очная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
2	3	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой.	МАКП

Разработчик рабочей программы	Ю.Б. Колошенко
старший преподаватель кафедры МАКП	« <u>24</u> » cupeul 20 <u>19</u> г.
СОГЛАСОВАНО	
Директор библиотеки	<u>«24» сиреше</u> 20/ <u>в</u> г.
Заведующий кафедрой (обеспечивающей) « <u>МАКП</u> »	<u>мяши</u> А.А. Буренин «24 » <u>Сиунли</u> 20/9 г.
Заведующий кафедрой (выпускающей) «Технология самолето- строения»	#1981 А.В. Бобков «24» 04 20/9 г.
Декан факультета « $\underline{CC\Phi}$ »	С.И. Феоктистов «24» 29 г.
Начальник учебно-методического управления	<u>4</u> Е.Е. Поздеева « <u>25</u> » <u>04</u> 20 <u>/9</u> г.

1 Общие положения

Рабочая программа дисциплины «Теоретическая механика» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 81 от 05.02.2018, и основной профессиональной образовательной программы подготовки «Самолетостроение» по направлению 24.03.04 Авиастроение.

Задачи	Освоение методов решения научно-технических задач в области механи-
дисциплины	ки и основных алгоритмов математического моделирования механиче-
	ских явлений;
	- Овладение навыками практического использования методов, предназначенных для математического моделирования движения и равновесия материальных тел и механических систем;
	- Формирование устойчивых навыков по применению фундаментальных положений теоретической механики при изучении дисциплин профессионального цикла и научном анализе ситуаций, с которыми выпускнику приходится сталкиваться в профессиональной деятельности.
Основные	Статика;
разделы / темы	Кинематика;
дисциплины	Динамика

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине		
	Универсальные			
	Общепрофессиональные			
ОПК-1	ОПК-1.1. Знает теоретические основы естественнонаучных и общеинженерных дисциплин ОПК-1.2. Умеет применять методы математического анализа и моделирования в профессиональной деятельности ОПК-1.3. Владеет навыками теоретического и экспериментального исследова-	Знать: - основные понятия и аксиомы механики, случаи приведения действующей на тело системы сил к простейшем виду, условия уравновешенности произвольной системы сил, методы нахождения реакций связей в покоящейся системе твердых тел, способы нахождения их центров тяжести; законы трения скольжения и качения; кинематические характеристи-		

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	ния в профессиональной деятельности	ки движения точки при различных способах задания движения; характеристики движения тела и его отдельных точек при различных способах задания движения; скорость и ускорение точки при сложном движении; дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; общие теоремы динамики, основные понятия и принципы аналитической механики (принцип Даламбера, принцип возможных перемещений) Уметь - приводить систему действующих сил к более простому эквивалентному виду, составлять уравнения равновесия для тела, находящегося под действием произвольной системы сил, находить положения центров тяжести тел; вычислять скорости и ускорения точек тел и самих тел, совершающих поступательное, вращательное и плоское движения; решать прямую и обратную задачи динамики точки; вычислять кинетическую энергию много массовой системы, работу сил, приложенных к твердому телу при указанных движениях. Владеть - навыками исследования равновесия твердого тела (системы тел) под действием плоской и пространственной систем сил; навыками решения задач по кинематике точки и твердого тела; навыками составления и решения дифференциальных уравнений движения точки и системы, основами методов механики.
	Профессиональные	· I

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Теоретическая механика» изучается на 2 курсе в 3 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Для освоения дисциплины необходимы знания, умения, навыки, сформированные в процессе изучения дисциплин: математика, физика.

Знания, умения и навыки, сформированные при изучении дисциплины «Теоретическая механика», будут востребованы при изучении последующих профессиональных дисциплин: прикладная механика, детали машин и основы конструирования.

Входной контроль проводится в виде тестирования. Задания тестов представлены в приложении 1 РПД.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	68
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, преду- сматривающие преимущественную передачу учебной информации пе- дагогическими работниками)	34
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	34
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации);	40
взаимодействие в электронной информационно-образовательной среде вуза Промежуточная аттестация обучающихся — Зачет с оценкой.	40

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

осто- удо- СРС
'DC'
יסמי
PU
2
_
_
2
2
2
4

	_	бной работы работу обуч емкость (в	нающихся и	
	Контактная работа преподава-			CPC
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися	
териала	Лекции	Семинар- ские (практи- ческие занятия)	Лабора- торные занятия	
6 Центр тяжести Центр тяжести плоской фигуры. Статический момент площади плоской фигуры относительно оси. Центр тяжести линии. Вспомогательные теоремы для определения положения центра тяжести.	2	2		2
7 Трение Трение скольжения, трение качения. Равновесие при наличии сил трения.	2	2		2
Раздел 2 Кин	ематика			
8 Кинематика точки. Кинематические способы задания движения точки (естественный, координатный, векторный). Скорость точки. Ускорение точки. Касательное и нормальное ускорения точки. Классификация движений точки по ускорениям ее движения.	2	2		2
9 Простейшие движения твердого тела Поступательное движение твердого тела. Вращательное движение твердого тела. Уравнение вращательного движения. Угловая скорость и угловое ускорение тела. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси. Передаточные механизмы.	2	2		2
10 Плоское движение твердого тела Свойства плоского движения твердого тела. Уравнение движения плоской фигуры. Теорема о скоростях точек плоской фигуры и ее следствия. План скоростей. Мгновенный центр скоростей. Теорема об ускорениях точек плоской фигуры и ее следствия. Мгновенный центр ускорений. Определение ускорений точек и угловых ускорений звеньев плоского механизма.	2	2		4
11 Сферическое движение твердого тела. Уравнения сферического движения твердого тела. Теорема о перемещении твердого тела, имеющего одну неподвижную точку. Угловая скорость тела. Угловое ускорение тела при сферическом движении. Скорости точек твердого тела при сферическом движении. Ускорения точек твердого тела при сферическом движении.	2	2		2

Наименование разделов, тем и содержание материала	ятельную Контакти	бной работы работы работу обучемкость (в ная работа пр с обучающи Семинарские (практи-ческие	нающихся и в часах) реподава-	
12.6		занятия)		
12 Сложное движение точки. Относительное, переносное и абсолютное движения точки. Теорема о сложении скоростей. Теорема о сложении ускорений (теорема Кориолиса).	2	2		2
Раздел 3. Дин	намика			
13 Динамика свободной материальной точки. Дифференциальные уравнения движения свободной материальной точки в декартовых координатах. Естественные уравнения движения материальной точки. Две основные задачи динамики точки.	2	2		4
14 Колебательное движение материальной точки. Виды колебательных движений материальной точки. Свободные колебания материальной точки. Затухающие колебания материальной точки. Вынужденные колебания материальной точки. Влияние сопротивления движению на вынужденные колебания.	2	2		2
15 Динамика относительного движения материальной точки. Дифференциальные уравнения относительного движения материальной точки. Случай относительного покоя. Сила тяжести.	2	2		2
16 Общие теоремы динамики. Теорема о движении центра масс механической системы. Теоремы об изменении количества движения материальной точки и количества движения механической системы. Теоремы об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы. Теорема об изменении кинетической энергии.	2	2		4
17 Аналитическая механика. Принцип возможных перемещений. Общее уравнение динамики. Дифференциальные уравнения движения механической системы в обобщенных координатах. Уравнения Лагранжа второго рода.	2	4		2
ИТОГО по дисциплине	34	34		40

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	30
Подготовка к занятиям семинарского типа	30
Подготовка и оформление РГР	32
ИТОГО	92

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 5 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	Т.
разделы (темы) дисциплины	компетенция	оценочного средства	Показатели оценки
Статика	ОПК-1	РГР (задача 1)	Определяет реакции опор и внутренние усилия в элементах конструкции. Владеет навыками составления уравнений статики. Владеет навыками определения положения центра тяжести.
Кинематика	ОПК-1	РГР (задача 2)	Определяет кинематические характеристики движения твёрдого тела.
Динамика	ОПК-1	РГР (задача 3)	Определяет динамиче- ские характеристики движения тела

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 6).

Таблица 6 – Технологическая карта

	Наименование оценочного средства	Сроки выполне- ния	Шкала оценива- ния	Критерии оценивания	
Промежуточная аттестация в форме «Зачет с оценкой»					
1	РГР (задача 1)	6 неделя	10 баллов	10 баллов - Студент полностью выпол-	

	Наименование оценочного	Сроки выполне-	Шкала оценива-	Критерии оценивания
	средства	ния	ния	материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. О баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный
2	РГР (задача 2)	10 неделя	10 баллов	результат. 10 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
3	РГР (задача 3)	12 неделя	10 баллов	10 баллов - Студент полностью выпол- нил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформ-
	<u> </u>	<u> </u>	<u> </u>	T T T T T

	Наименование оценочного средства	Сроки выполне- ния	Шкала оценива- ния	Критерии оценивания
нте				лена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. О баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
ИТО	ОГО:		30	

Критерии оценки результатов обучения по дисциплине:

Задания для текущего контроля

В течение 3-го семестра студенты должны выполнить одну расчетно-графическую работу, состоящую из 3-х задач.

Задачи выдаются из учебного пособия: Сборник заданий для курсовых работ по теоретической механике: Учебное пособие под ред. А.А. Яблонского. СПб.: Лань, 2006. Каждое задание содержит 30 вариантов. Номер варианта выдаётся преподавателем, ведущим практические занятия, например, по списку в журнале учебной группы или шифру. Примеры выполнения заданий содержатся в Приложении 2.

Расчетно-графическая работа

Задача № 1

Тема задачи: «Определение реакций опор твердого тела».

Задача №2

Тема задачи: «Кинематический анализ плоского механизма».

Задача №3

Тема задачи: «Применение теоремы об изменении кинетической энергии к изучению движения механической системы».

Примечание: На усмотрение ведущего преподавателя допускается выдавать задания, аналогичные по тематике и трудоёмкости, из других учебно-методических пособий.

 $^{0-64\,\%}$ от максимально возможной суммы баллов – «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);

^{65 - 74} % от максимально возможной суммы баллов – «удовлетворительно» (пороговый (минимальный) уровень);

^{75 – 84 %} от максимально возможной суммы баллов – «хорошо» (средний уровень);

^{85 – 100 %} от максимально возможной суммы баллов – «отлично» (высокий (максимальный) уровень)

Вопросы для защиты РГР.

- 1. Какие допущения приняты при решении поставленных задач?
- 2. В какой последовательности решаются задачи статики на равновесие?
- 3. Объясните, как направлялись реакции связей на расчётных схемах?
- 4. Запишите известные вам формы необходимых и достаточных уравнений равновесия для произвольной плоской системы сил.
- 5. Какие механические системы являются статически неопределимыми?
- 6. Сформулируйте теорему Вариньона о моменте равнодействующей для случая про-извольной плоской системы сил.
- 7. В каком случае оправданно применение теоремы Вариньона о моменте равнодействующей?
- 8. Найдите момент силы, указанной преподавателем на расчётной схеме относительно заланной им же точки.
- 9. Как изменится состояние твёрдого тела, если пару сил перенести в плоскости пары в пределах данного тела?
- 10. Сравните моменты пары сил относительно двух точек, указанных преподавателем на расчетной схеме.
- 11. Сделайте проверку правильности решения, составив и решив одно, наиболее эффективное на Ваш взгляд, проверочное уравнение.
- 12. Какое движение совершает звено указанное преподавателем на кинематической схеме механизма? Дайте определение этого движения.
- 13. Что называется мгновенным центром скоростей?
- 14. Как определить положение мгновенного центра скоростей?
- 15. Какое движение совершает звено, если его мгновенный центр скоростей находится в бесконечности?
- 16. Как найти величину и направление угловой скорости звена указанного преподавателем на кинематической схеме механизма?
- 17. Изобразите вектор скорости точки, указанной преподавателем на кинематической схеме механизма.
- 18. Сравните по величине скорости двух точек, указанных преподавателем на кинематической схеме механизма.
- 19. Сформулируйте теорему о проекциях скоростей двух точек твёрдого тела на ось проходящую через эти точки.
- 20. Объясните направление каждого из векторов ускорений, изображённых на кинематической схеме механизма.
- 21. По каким формулам вычислялись величины ускорений, векторы которых показаны на кинематической схеме механизма?
- 22. В чём заключается аналитический способ определения ускорения точки звена, совершающего плоское движение?
- 23. В чём заключается графический способ определения ускорения точки звена, совершающего плоское движение?
- 24. Сравните по величине ускорения двух точек, указанных преподавателем на кинематической схеме механизма.
- 25. Как найти величину и направление углового ускорения звена?
- 26. Как вращается звено, указанное преподавателем на кинематической схеме механизма (ускоренно, замедленно или равномерно)?
- 27. Сформулируйте теорему об изменении кинетической энергии механической системы. Запишите соответствующую формулу.
- 28. По какой формуле находится кинетическая энергия материальной точки?
- 29. В каких случаях кинетическая энергия материальной точки равна нулю?

- 30. Как в данной работе находилась кинетическая энергия механической системе в начальном и конечном положениях?
- 31. Как найти кинетическую энергию твёрдого тела, указанного преподавателем на расчётной схеме механической системы?
- 32. Как найти работу силы, указанной преподавателем на расчётной схеме механической системы?
- 33. Найти соотношение между перемещениями двух точек, указанных преподавателем на расчётной схеме механической системы.
- 34. В каких случаях работа силы равна нулю?
- 35. Чему равна работа силы приложенной в мгновенном центре скоростей?
- 36. Как найти работу пары сил?

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1 Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики: T1,2-M.: Наука, 1985.
- 2. Никитин Н.Н. Курс теоретической механики. М.: Высш. шк., 1990.
- 3. Мещерский И.В. Сборник задач по теоретической механике. М.: Наука, 1986.
- 4. Сборник заданий для курсовых работ по теоретической механике. А.А. Яблонский, С.С. Норейко и др. М: Интеграл, 1998.
- 5. Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах: T1,2 M: Наука, 1991.

8.2 Дополнительная литература

- 1. Тарг, С.М.Кратский курс теоретической механики : учебник для тех. вузов / С.М.Тарг. Высшая школа, 1998 416с.
- 2. Кирсанов, М. Н. Теоретическая механика. Сборник задач [Электронный ресурс] : учебное пособие / М. Н. Кирсанов. М.: НИЦ ИНФРА-М, 2015. 430с. // ZNANIUM.COM : электронно-библиотечная система. Режим доступа:

http://www.znanium.com/catalog.php, ограниченный. Загл. С экрана.

3. Кирсанов, М.Н. Решебник. Теоретическая механика [Электронный ресурс] / М.Н. Кирсанов; под ред. А. И. Кирилова. – 2-е изд., исправ. – М.: ФИЗМАТЛИТ, 2008. –

384c. // ZNANIUM.COM : электронно-библиотечная система. — Режим доступа:

http://www.znanium.com/catalog.php, ограниченный. – Загл. с экрана.

8.3 Методические указания для студентов по освоению дисциплины (при наличии)

- 1 Элементы теории и примеры решения задач по теоретической механике: в 2 ч., ч.1: учеб. пособие/М.Р. Петров, Г.А. Щербатюк, Ю.Б. Колошенко. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2011. 64с.
- 2 Статика. Основные системы сил: методические указания для студентов всех специальносте, всех форм обучения, изучающих теоретическую механику/ Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2009. 16 с.
- 3 Кинематика: справочные сведения для студентов всех специальностей и форм обучения, изучающих теоретическую механику/ Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2008. 11 с.

- 4 Кинематика сложного движения точки: методические указания к решению задач по курсу «Теоретическая механика» для студентов всех специальностей всех форм обучения/ Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2011. 19 с.
- 5 Свободные прямолинейные колебания: методические указания к решению задач по курсу «Теоретическая механика»/ Г.А. Щербатюк, М.Р. Петров. Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 20013. 15 с.
- 6 Теорема об изменении кинетической энергии: методические указания к решению задач для студентов всех специальностей и форм обучения, изучающих теоретическую механику/ Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2014.-15 с.
- 7 Уравнения Лагранжа второго рода: методические указания к решению задач для студентов всех специальностей и форм обучения, изучающих теоретическую механику/ Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2015. 14 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1 Электронно-библиотечная система ZNANIUM.COM. Договор ЕП 44 № 003/10 эбс ИКЗ 191272700076927030100100120016311000 от 17 апреля 2019 г.
- 2 Электронно-библиотечная система IPRbooks. Лицензионный договор № ЕП44 № 001/9 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 191272700076927030100100090016311000 от 27 марта 2019г.
- 3 Электронно-библиотечная система eLIBRARY.RU. Договор № ЕП 44 № 004/13 на оказание услуг доступа к электронным изданиям ИКЗ 191272700076927030100100150016311000 от 15 апреля 2019 г.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1 Национальная платформа открытого образования. https://openedu.ru/
- 2 https://teoretmeh.ru

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке: https://www.openoffice.org/license.html

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;

- самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
- использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

Для реализации дисциплины подготовлены следующие презентации:

- 1 Статика;
- 2 Кинематика;
- 3 Динамика.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

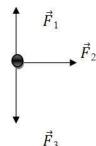
- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ПРИЛОЖЕНИЕ 1

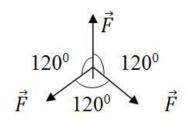

1. Что называется силой?

- а) Давление одного тела на другое
- б) Мера воздействия одного тела на другое
- в) Величина взаимодействия между телами
- г) Мера взаимосвязи между телами (объектами)
- 2. Назовите единицу измерения силы?
- а) Паскаль
- б) Ньютон
- в) Герц
- г) Джоуль

3. Чем нельзя определить действие силы на тело?

- а) числовым значением (модулем)
- б) направлением
- в) точкой приложения
- г) геометрическим размером
- 4. Какой прибор служит для статического измерения силы?
- а) амперметр
- б) гироскоп
- в) динамометр
- г) силомер
- 5. Какая система сил называется уравновешенной?
- а) Две силы, направленные по одной прямой в разные стороны
- б) Две силы, направленные под углом 90° друг к другу
- в) Несколько сил, сумма которых равна нулю
- г) Система сил, под действием которых свободное тело может находится в покое
- 6. Чему равна равнодействующая трёх приложенных к телу сил, если

$F_1 = F_2 = F_3 = 10 \kappa H$? Куда она направлена?



- а) 30 кН, вправо
- б) 30 кН, влево
- в) 10 кН, вправо
- г) 20 кН, вниз

7. Какого способа не существует при сложении сил, действующих на тело?

- а) геометрического
- б) графического
- в) тензорного
- г) аналитического
- 8 . Две силы F_1 =30H и F_2 =40H приложены к телу под углом 90^0 друг другу. Чему равна их равнодействующая?
- a) 70H
- б)10Н
- в) 50H
- г) 1200Н

9. Чему равна равнодействующая трёх сил, если $F_1 = F_2 = F_3 = 10 \text{ кH}$?

- a) 0 кН
- б) 10 кН
- в) 20 кН
- г) 30 кН

10. Что называется моментом силы относительно точки (центра)?

- а) Произведение модуля этой силы на время её действия
- б) Отношение силы, действующей на тело, к промежутку времени, в течение которого эта сила действует
- в) Произведение силы на квадрат расстояния до точки (центра)
- г)Произведение силы на кратчайшее расстояние до этой точки (центра)

11. Когда момент силы считается положительным?

- а) Когда под действием силы тело движется вперёд
- б) Когда под действием силы тело вращается по ходу часовой стрелки
- в) Когда под действием силы тело движется назад
- г) Когда под действием силы тело вращается против хода часовой стрелки

12. Что называется центром тяжести?

- а) Это точка, в которой может располагаться масса тела
- б) Это точка, через которую проходит равнодействующая сил тяжести, действующих на частицы данного тела
- в) Это точка приложения силы тяжести
- г) Это точка, в которой совпадают центр симметрии тела и центра тяжести тела

13. Какое тело считается свободным?

- а) Имеющее одну точку опоры
- б)Находящееся в равновесии
- в) На которое не наложены связи
- г) Если равнодействующая всех сил равна нулю

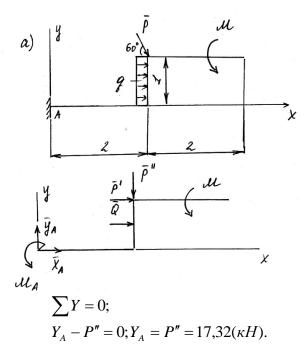
ПРИЛОЖЕНИЕ 2

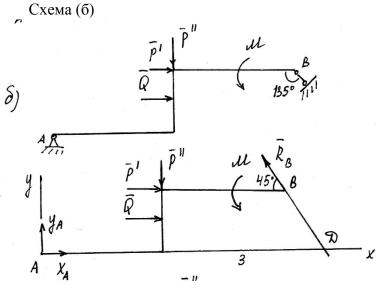
Пример выполнения работ 2 семестр

Расчетно-графическая работа

Задача № 1

Тема задачи: «Определение реакций опор твердого тела».

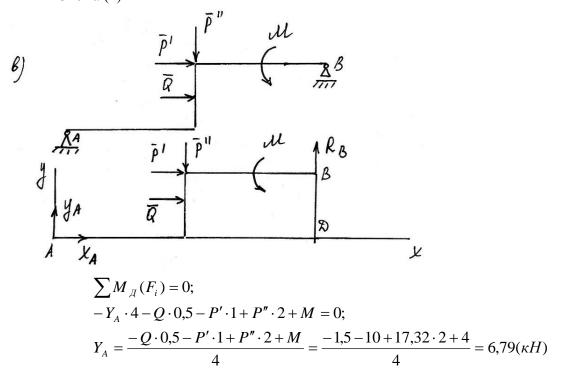

Дано: Р=20 кН; М=4 кНм; q=3кН/м.


Определить: реакцию У_А.

Решение:

Разложим силу \overline{P} на составляющие: $P' = P\cos 60 = 10(\kappa H);$ $P'' = P\sin 60 = 17,32(\kappa H).$

Распределенную нагрузку заменим равнодействующей $Q = q \cdot 1 = 3$ (кH). Cхема (a)



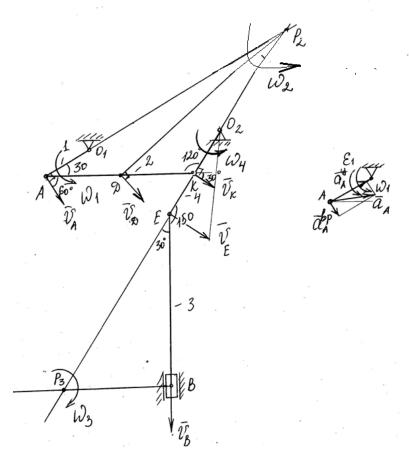
$$\sum M_{\mathcal{A}}(F_i) = 0;$$

$$-Y_A \cdot 5 - Q \cdot 0.5 - P' \cdot 1 + P'' \cdot 3 + M = 0;$$

$$Y_A = \frac{-Q \cdot 0.5 - P' \cdot 1 + P'' \cdot 3 + M}{5} = \frac{-1.5 - 10 + 17.32 \cdot 3 + 4}{5} = 8.89(\kappa H)$$

Схема (в)

Для случая (в) исследуемая реакция наименьшая. Определим остальные реакции.


$$\begin{split} \sum X &= 0; \\ X_A + Q + P' &= 0; \\ X_A &= -Q - P' = -3 - 10 = -13(\kappa H); \\ \sum M_A(F_i) &= 0; \\ -Q \cdot 0.5 - P' \cdot 1 - P'' \cdot 2 + M + R_B \cdot 4 = 0; \\ R_B &= \frac{Q \cdot 0.5 + P' \cdot 1 + P'' \cdot 2 - M}{4} = \frac{1.5 + 10 + 17.32 \cdot 2 - 4}{4} = 10.54(\kappa H). \end{split}$$

Задача №2

Тема задачи: «Кинематический анализ плоского механизма».

$$l_{1} = 0.4 \text{m}; l_{2} = 1.2 \text{m}; l_{3} = 1.4 \text{m}; l_{4} = 0.8 \text{m}; \varepsilon_{1} = 10 c^{-2}; \alpha = 90^{\circ}; \beta = 150^{\circ}; \gamma = 120^{\circ}; \varphi = 90^{\circ}; \theta = 30^{\circ}; \omega_{4} = 5(1/c).$$

Определить: $V_A, V_D; \omega_3, a_A...$

Решение

1 Вычертим схему в масштабе, согласно заданных углов.

2 Определим $V_{\scriptscriptstyle A}, V_{\scriptscriptstyle D}; \omega_3$

Т.к. звено 4 совершает вращательное движение, то

$$\begin{split} V_E &= \omega_4 \cdot l_4; \\ V_K &= \omega_4 \cdot 0,5 l_4; \\ V_E &= 5 \cdot 0,8 = 4 (\textit{m/c}); \\ V_K &= 5 \cdot 0,4 = 2 (\textit{m/c}). \end{split}$$

Т.к. звено 2 совершает плоское движение, то по свойству проекций скоростей точек $V_{\scriptscriptstyle K}\cos 30 = V_{\scriptscriptstyle A}\cos 60$, то

$$V_A = \frac{V_K \cos 30}{\cos 60};$$

 $V_A = \frac{2 \cdot \cos 30}{\cos 60} = 3,46 \text{m/c}.$

Точка P_2 – мгновенный центр скоростей звена 2, тогда

$$V_K = \omega_2 K P_2;$$

$$V_D = \omega_2 D P_2.$$

Из $\Delta\!AP_2K$ - равнобедренного $K\!P_2=l_2=1,2$ м;

$$DP_2 = \sqrt{0.6^2 + 1.2^2 + 2 \cdot 0.6 \cdot 1.2 \cos 120} = 1.04 \text{M};$$

Тогда

$$\omega_{2} = \frac{V_{K}}{KP_{2}};$$

$$V_{D} = \frac{V_{K}}{KP_{2}}DP_{2};$$

$$V_{D} = \frac{2 \cdot 1,04}{1.2} = 1,73 \text{ m/c}.$$

Точка P_3 – мгновенный центр скоростей звена 3, тогда

$$V_E = \omega_3 E P_3;$$

Из ΔEP_3B - прямоугольного $\cos 30 = \frac{l_3}{EP_3}$; $EP_3 = \frac{l_3}{\cos 30}$.

Тогда

$$\omega_{3} = \frac{V_{E}}{EP_{3}} = \frac{V_{E}\cos 30}{l_{3}};$$

$$\omega_{3} = \frac{4\cos 30}{1,4} = 2,47(1/c).$$

$$\omega_{2} = \frac{V_{D}}{DP_{2}};$$

$$V_{A} = \frac{V_{D}}{DP_{2}}AP_{2};$$

$$V_{E} = \frac{V_{D}}{DP_{2}}EP_{2};$$

$$\omega_{2} = \frac{6}{1,04} = 5,77(1/c);$$

$$V_{A} = \frac{6}{1,04} \cdot 1,2 = 6,92 \text{m/c};$$

$$V_{E} = \frac{6}{1,04} \cdot 1,2 = 6,92 \text{m/c}.$$

3 Ускорение a_A .

Для т. А
$$\overline{a}_{\scriptscriptstyle A}=\overline{a}_{\scriptscriptstyle A\tau}+\overline{a}_{\scriptscriptstyle An}$$
 , где $a_{\scriptscriptstyle A\tau}=l_{\scriptscriptstyle 1}\cdot\varepsilon_{\scriptscriptstyle 1}$, $a_{\scriptscriptstyle An}=l_{\scriptscriptstyle 1}\cdot\omega_{\scriptscriptstyle 1}^2$.

Угловая скорость звена 1 - $\omega_1 = \frac{V_A}{l_1}$.

Тогда

$$a_{A\tau} = 0.4 \cdot 10 = 4M/c^{2};$$

 $a_{An} = 0.4 \cdot \left(\frac{3.46}{0.4}\right)^{2} = 29.9M/c^{2}$

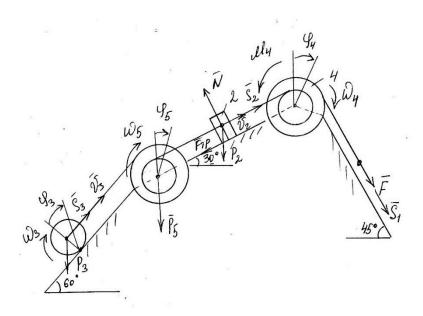
Полное ускорение $a_A = \sqrt{a_{A\tau}^2 + a_{An}^2} = \sqrt{4^2 + 29.9^2} = 30.17$ (см/с²).

Задача №3

Тема задачи: «Применение теоремы об изменении кинетической энергии к изучению движения механической системы»

Дано:
$$f = 0,1$$
, $R_4 = 0,3$ м, $r_4 = 0,1$ м, $R_5 = 0,2$ м, $r_5 = 0,1$

$$m_1 = 0 \kappa \varepsilon; m_2 = 4; m_3 = 6 \kappa \varepsilon; m_4 = 0; m_5 = 10 \kappa \varepsilon; M_4 = 0,6 H\text{m}; F = 30(8+3S)H.$$


Определить: ω_5 , если $S_1 = 0.8 M$

Решение

1. Рассмотрим движение неизменяемой механической системы, состоящей из тел, соединенных нитями. Изобразим действующие на систему внешние силы: активные F, P_1 , P_3 , P_5 ,сила трения $F_{\tau p1}$ и момент сопротивления M_4 .

Для определения ω_5 воспользуемся теоремой об изменении кинетической энергии:

$$T - T_0 = \sum A_k^e$$

2. Определяем T и T_0 . Так как в начальный момент система находилась в покое, то T_0 =0. Величину T найдем как сумму кинетических энергии всех тел системы

$$T=T_2+T_3+T_5$$
.

Учитывая, что тело 3 движется плоскопараллельно, тело 2 — поступательно, а тело 5 вращается вокруг неподвижной оси, получим

$$T_3 = \frac{m_3 V_{C3}^2}{2} + \frac{I_3 \omega_3^2}{2}, T_2 = \frac{m_2 V_2^2}{2}, T_5 = \frac{I_5 \omega_5^2}{2}.$$

Все входящие скорости нужно выразить через искомую ω_5 .

$$V_2 = \omega_5 r_5, \ V_{C3} = \omega_5 R_5 = \omega_3 R_3; \ \omega_3 = \frac{\omega_5 R_5}{R_2}.$$

Кроме того, моменты инерции имеют значения

$$I_3 = \frac{m_3 R_3^2}{2}, I_5 = m_5 R_5^2.$$

Подставив величины, а затем окончательно получим

$$T = \omega_5^2 \left(\frac{m_2 r_5^2}{2} + \frac{m_5 R_5^2}{4} + \frac{m_3 R_5^2}{2} + \frac{1}{2} \frac{m_3 R_5^2}{2} \right);$$

$$T = \omega_5^2 \left(\frac{4 \cdot 0.1^2}{2} + \frac{10 \cdot 0.2^2}{4} + \frac{6 \cdot 0.2^2}{2} + \frac{1}{2} \frac{6 \cdot 0.2^2}{2} \right) = 0.3\omega_5^2$$

3. Найдем сумму работ всех внешних сил при перемещении, которое будет иметь система, когда центр масс груза 1 пройдет путь s_1 .

$$A(\overline{F}) = \int_{0}^{s_{1}} F ds = \int_{0}^{s_{1}} 30(8+3s) ds = 30(8s_{1}+1.5s_{1}^{2}) = 30(8\cdot0.8+1.5\cdot0.8^{2}) = 220.8 \text{ M} \text{s.c.}$$

$$A(\overline{P}_{2}) = -P_{2}s_{2}\sin 30^{\circ} = -m_{2}gs_{2}\sin 30^{\circ} = -m_{2}g\frac{S_{1}r_{4}}{R_{4}}\sin 30 = -4\cdot10\cdot\frac{0.8\cdot0.1}{0.3}\sin 30^{\circ} = -5.33 \text{ M} \text{s.c.}$$

$$A(\overline{P}_{3}) = -P_{3}s_{3}\sin 60^{\circ} = -m_{3}gs_{3}\sin 60^{\circ} = -m_{3}g\cdot\frac{S_{1}r_{4}R_{5}}{R_{4}r_{5}}\sin 60 = -6\cdot10\cdot0.8\cdot\frac{0.2}{0.3}\sin 60^{\circ} = -27.71 \text{ M} \text{s.c.}$$

$$A(\overline{F}_{mp2}) = -F_{mp2}s_{2} = -fN_{2}s_{2} = -fm_{2}gs_{2}\cos 30^{\circ} = -fm_{2}g\frac{S_{1}r_{4}}{R_{4}}\cos 30^{\circ} = 0.1\cdot4\cdot10\cdot\frac{0.8\cdot0.1}{0.3}\cos 30 = -0.92 \text{ M} \text{s.c.}$$

$$A(M_{4}) = -M_{4}\varphi_{4} = -M_{4}\frac{s_{1}}{R_{4}} = -0.6\cdot\frac{0.8}{0.3} = -1.6 \text{ M} \text{s.c.}$$

Суммируем найденные работы

$$\sum A_k^e = 185,24$$
Дж.

Тогда

$$0,3\omega_5^2 = 185,24;$$

$$\omega_5 = 24,851/c$$
.

Лист регистрации изменений к РПД

№п/п	Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц измене- ния	Подпись автора РПД