Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

энергетики и управления

(наименование факультета)

А.С. Гудим

(подпись, ФИО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Средства автоматизированных вычислений

Направление подготовки	12.03.04 "Биотехнические системы и технологии"
Направленность (профиль) образовательной программы	Инженерное дело в медико-биологической практике
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	очная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
1	1	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	Кафедра ЭПАПУ - Электропривод и
	автоматизация промышленных установок

Разработчик рабочей программы: Старший преподаватель Д.О. Савельев (ФИО) (должность, степень, ученое звание) (подпись) СОГЛАСОВАНО: Заведующий кафедрой «ЭПАПУ» С.П. Черный (наименование кафедры) (ФИО) (подпись) Заведующий выпускающей кафедрой¹ «Промышленная электроника» Н.Н. Любушкина (наименование кафедры) (ФИО) (подпись)

¹ Согласовывается, если РПД разработана не на выпускающей кафедре.

1 Общие положения

Рабочая программа дисциплины «Средства автоматизированных вычислений» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 950 от 19.09.2017, и основной профессиональной образовательной программы подготовки «Инженерное дело в медико-биологической практике» по направлению 12.03.04 "Биотехнические системы и технологии".

Задачи	Приобретение практических навыков работы в конкретных пакетах, си-
дисциплины	стем компьютерной математики (СКМ) по решению тривиальных задач
	математики; овладение знаниями базовых возможностей современных
	СКМ для дальнейших исследований физических моделей процессов и
	явлений; освоение приемов, методов и способов выявления, наблюдения,
	измерения и контроля параметров вычислительных процессов.
Основные	Определение функций. Построение графиков.
разделы / темы	Решение алгебраических уравнений, систем уравнений.
дисциплины	Аппроксимация, интерполяция, регрессия.
	Решение дифференциальных уравнений и их систем.
	Mathcad: элементы программирования.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Средства автоматизированных вычислений» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения	Планируемые результаты	
компетенции		обучения по дисциплине	
	Универсальные		
	Общепрофессиональные		
ОПК-4 Способен	Использует современные ин-	Использовать современное	
использовать совре-	формационные технологии и	программное обеспечение	
менные информаци-	программное обеспечение при	средств автоматизированных	
онные технологии и	решении задач профессиональ-	вычислений.	
программное обес-	ной деятельности.	Применять языки программи-	
печение при реше-	Использует современные ин-	рования высокого уровня при	
нии задач професси-	формационные технологии и	программировании средств и	
ональной деятельно-	программное обеспечение при	алгоритмов автоматизирован-	
сти, соблюдая тре-	решении задач профессиональ-	ных вычислений	
бования информа-	ной деятельности.		
ционной безопасно-	Владеет навыками обеспечения		
сти	информационной безопасности.		
	Профессиональные		

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Средства автоматизированных вычислений» изучается на 1 курсе(ах) в 1 семестре(ах).

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Знания, умения и навыки, сформированные при изучении дисциплины «Средства автоматизированных вычислений», будут востребованы при изучении последующих дисциплин «Теоретические основы электротехники».

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	48
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	16
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	32
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	60
Промежуточная аттестация обучающихся — Зачет с оценкой	

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

	•	ной работы, аботу обучан		
	кость (в часах)			
	Кон	тактная рабо	ота	
Наименование разделов, тем и содержание	преподавателя с обучающимися			
материала	Лекции	Семинар-	Лабора-	
		ские	торные	CPC
		(практи-	занятия	
		ческие		
		занятия)		
Раздел 1 Определение функций. Построе-	2	_	8	12
ние графиков.				
Тема 1.1 Способы задания переменных и	1			3
функций. Построение графиков функций.				
Тема 1.2 Редактирование и изменение пара-	1			3
метров графиков функции.			4	3
Основы работы в среде MathCAD Построение графиков в среде MathCad			4	3
Раздел 2 Решение алгебраических уравне-			4	3
ний, систем уравнений.	4	-	10	12
Тема 2.1 Решение алгебраических уравнений				
и системы уравнений.	2			3
Тема 2.2 Встроенные функции: root, polyroot,				
Giv-en→Find, Isolve.	2			3
Вектора и матрицы в среде MathCad			6	3
Решение уравнений в среде MathCad			4	3
Раздел 3 Аппроксимация, интерполяция,	2		4	10
регрессия	2		4	12
Тема 3.1 Линейная и сплайн интерполяции,				
экстраполяции (линейная, кубическая, парабо-	2			6
лическая), линейная и параболическая регрес-	2			U
сии				
Исследование функций в среде MathCad			4	6
Раздел 4 Решение дифференциальных урав-	4	_	_	12
нений и их систем.	-			
Тема 4.1 Решение дифференциальных уравне-	2			6
ний				
Тема 4.2 Решение систем дифференциаль-	2			6
ных уравнений				
Раздел 5 Mathcad: Элементы программиро-	4	-	10	12
Тема 5.1 Операции с векторами и матрица-				
ми. Символьные вычисления в MathCAD.	2			4
тема 5.2 Программирование в MathCAD.	2			4
Символьные вычисления в среде MathCAD			4	2
Cumositorio doi menerum d'epede munical		l	Т Т	2

		ной работы, аботу обучан	ощихся и тр	
	Кон	кость (в ч тактная рабо		
Наименование разделов, тем и содержание	преподава	теля с обуча	ющимися	
материала	Лекции	Семинар-	Лабора-	
		ские	торные	CPC
		(практи-	занятия	
		ческие		
		занятия)		
Программирование в среде MathCad			6	2
ИТОГО	16		32	60
по дисциплине	10	-	34	UU

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	25
Подготовка к защите лабораторных работ	15
Подготовка и оформление РГР	20
	60

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Методы вычислений в пакете MathCAD [Электронный ресурс] : учебное пособие / И.А. Бедарев [и др.]. Электрон. текстовые данные. Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), 2013. 169 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/68893.html, ограниченный. Загл. с экрана.
- 2) Решение инженерных задач в пакете MathCAD [Электронный ресурс] : учебное пособие / Ю.Е. Воскобойников [и др.]. Электрон. текстовые данные. Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), 2013. 121 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/68838.html, ограниченный. Загл. с экрана.
 - 3) Исаев Ю.Н. Практика использования системы MathCad в расчетах электрических

и магнитных цепей [Электронный ресурс] : учебное пособие / Ю.Н. Исаев, А.М. Купцов. – Электрон. текстовые данные. – М. : СОЛОН-ПРЕСС, 2013. – 180 с. // IPRbooks : электронно-библиотечная система. – Режим доступа: http://www.iprbookshop.ru/26925.html, ограниченный. – Загл. с экрана.

8.2 Дополнительная литература

- 1) Дьяконов В.П. Маthcad 8–12 для студентов [Электронный ресурс] / В.П. Дьяконов. Электрон. текстовые данные. М.: СОЛОН-ПРЕСС, 2005. 632 с. // IPRbooks: электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/20845.html, ограниченный. Загл. с экрана.
- 2) Митрофанов С.В. Использование системы MathCAD при решении задач электротехники и электромеханики [Электронный ресурс] : методические указания к выполнению РГЗ по дисциплине «Прикладные задачи программирования» / С.В. Митрофанов, А.С. Падеев. Электрон. текстовые данные. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2005. 39 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/51516.html, ограниченный. Загл. с экрана.
- 3) Алехин В.А. Электротехника и электроника: Лабораторный практикум с использованием Миниатюрной электротехнической лаборатории МЭЛ, компьютерного моделирования, Mathcad и LabVIEW [Электронный ресурс]: учебное пособие / В.А. Алехин. Электрон. текстовые данные. Саратов: Вузовское образование, 2017. 225 с. // IPRbooks: электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/64898.html, ограниченный. Загл. с экрана.

8.3 Методические указания для студентов по освоению дисциплины

Изучение дисциплины «Средства автоматизированных вычислений» осуществляется в процессе аудиторных занятий и самостоятельной работы студента. Аудиторные занятия проводятся в форме лекций и лабораторных занятий. Разделы дисциплин следует изучать последовательно, начиная с первого. Каждый раздел, формирует необходимые условия для создания системного представления о предмете дисциплины.

Самостоятельная работа является наиболее продуктивной формой образовательной и познавательной деятельности студента в период обучения. СРС направлена на углубление и закрепление знаний студента, развитие практических умений. СРС включает следующие виды работ:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуальному заданию;
 - опережающую самостоятельную работу;
 - выполнение РГР;
 - изучение тем, вынесенных на самостоятельную проработку;
 - подготовку к мероприятиям текущего контроля;
 - подготовку к промежуточной аттестации (итоговая оценка).

Студенту необходимо усвоить и запомнить основные термины, понятия и их определения, подходы, концепции и методики.

Контроль самостоятельной работы студентов и качество освоения дисциплины осуществляется во время аудиторных занятий. Для этого, во время лекций используются элементы дискуссии и контрольные вопросы. Уровень освоения умений и навыков проверяется на лабораторных занятиях. Для этого используются задания, подготовленные студентами во время семестра и предназначенные для текущего контроля (таблица 6).

Промежуточная аттестация (итоговая оценка) производится в конце семестра и также оценивается в баллах.

Итоговый рейтинг определяется суммированием баллов по результатам текущего

контроля и баллов, полученных на промежуточной аттестации. Максимальный итоговый рейтинг – 100 баллов. Оценке «отлично» соответствует 85 - 100 баллов; «хорошо» – 75 - 84; «удовлетворительно» – 65 - 74; менее 64 – «неудовлетворительно»

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1) Библиотека РФФИ http://www.rfbr.ru/rffi/ru/library
- 2) Научная электронная библиотека "КиберЛенинка" https://cyberleninka.ru/
- 3) Единое окно доступа к информационным ресурсам http://window.edu.ru/

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) http://communities.ptc.com/community/mathcad сайт компании РТС, производителя Mathcad
- 2) http://www.pts-russia.com/ сайт авторизованного партнера компании РТС (Parametric Technology Corporation) в России
- 3) http://mcs.ptc.com/mcs/ информация о Mathcad Calculation Server. Примеры, документация.
- 4) http://www.mathcad.com/library/ библиотека ресурсов по системе Mathcad. Книги, электронные книги Mathcad, файлы Mathcad, галереи графики и анимаций, головоломки.

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты
Mathcad Education	Договор № 106-АЭ120 от 27.11.2012

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на

отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
202/3	Лаборатория ЭВМ и вычислительных промышленных сетей	

10.2 Технические и электронные средства обучения

Лекционные занятия

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Лабораторные занятия

Для лабораторных занятий используется аудитория №202/3, оснащенная оборудованием, указанным в табл. 6.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 214 корпус № 3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ² по дисциплине

Средства автоматизированных вычислений

Направление подготовки	12.03.04 "Биотехнические системы и технологии"
Направленность (профиль) образовательной программы	Инженерное дело в медико-биологической практике
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	очная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
1	1	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	Кафедра ЭПАПУ - Электропривод и
	автоматизация промышленных установок

12

 $^{^2}$ В данном приложении представлены типовые оценочные средства. Полный комплект оценочных средств, включающий все варианты заданий (тестов, контрольных работ и др.), предлагаемых обучающемуся, хранится на кафедре в бумажном и электронном виде.

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование Индикаторы достижения		Планируемые результаты
компетенции		обучения по дисциплине
	Универсальные	
	Общепрофессиональные	
ОПК-4 Способен	Использует современные ин-	Использовать современное
использовать совре-	формационные технологии и	программное обеспечение
менные информаци-	программное обеспечение при	средств автоматизированных
онные технологии и	решении задач профессиональ-	вычислений.
программное обес-	ной деятельности.	Применять языки программи-
печение при реше-	Использует современные ин-	рования высокого уровня при
нии задач професси-	формационные технологии и	программировании средств и
ональной деятельно-	программное обеспечение при	алгоритмов автоматизирован-
сти, соблюдая тре-	решении задач профессиональ-	ных вычислений
бования информа-	ной деятельности.	
ционной безопасно-	Владеет навыками обеспечения	
сти	информационной безопасности.	
	Профессиональные	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1 – 5	ОПК-4	Тест	Правильность выполнения задания
Разделы 1, 2, 3, 5	ОПК-4	Защита лабораторных работ	Аргументированность ответов
1-5	ОПК-4	РГР	Полнота и правильность выполнения задания

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного сред ства	т споки	Шкала оце- нивания	Критерии оценивания
77		ееместр	·
Промеж Тест	в течение се-		·
Tecr	в течение се-	23 оаллов	25 баллов — 91-100 % правильных ответов — высокий уровень знаний; 20 баллов — 71-90 % правильных ответов — достаточно высокий уровень знаний; 15 баллов — 61-70 % правильных ответов — средний уровень знаний; 10 баллов — 51-60 % правильных ответов — низкий уровень знаний; 0 баллов — 0-50 % правильных ответов — очень низкий
Лабораторная р	а- в течение се-	5 баллов	уровень знаний. 5 баллов – студент показал
бота 1	местра	5 outros	отличные навыки применения
Лабораторная р бота 2	а- в течение се-	5 баллов	полученных знаний и умений при решении профессиональ-
Лабораторная р бота 3	а- в течение се- местра	5 баллов	ных задач в рамках усво-
Лабораторная р бота 4	а- в течение се-	5 баллов	енного учебного материала. 4 балла – студент показал хо-
Лабораторная р бота 5		5 баллов	рошие навыки применения полученных знаний и умений
Лабораторная р бота 6	а- в течение се-		при решении профессиональных задач в рамках усвоенно-
Лабораторная р бота 7		5 баллов	го учебного материала. 3 балла — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 2 балла — студент продемонстрировал недостаточный уровень владения умениями и

	Наименование оценочного сред- ства	Сроки выполнения	Шкала оце- нивания	Критерии оценивания
				навыками при решении профессиональных задач в рамках усвоенного учебного материала.
	РГР	в течение семестра	30 баллов	30 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 20 баллов — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 15 баллов — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 0 баллов — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
ИТОГ	·O:	-	100 баллов	-

- ИТОГО: 100 баллов Критерии оценки результатов обучения по дисциплине:
 0 − 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- (пороговый (минимальный) уровень); 75 84 % от максимально возможной суммы баллов «удовлетворительно» (тороговый (минимальный) уровень); 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень); 85 100 % от максимально возможной суммы баллов «отлично» (высокий (макси-
- мальный) уровень)

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

Тест

1) Введите правильный ответ:

Восьмеричное число заканчивается строчной латинской буквой ...

2) Переменная х является ранжированной в случае

/ 1	<u> </u>	2
a) $x = 5$		в) х:= 1, 1.25
б) x:= 1011 <i>b</i>		$\Gamma) x := 4 + 3i$

3) Установите соответствие:

а) булево равно	1) →
б) присваивание	2) =
в) численное равно	3) :=
г) символьное равно	4) =

4) Функция, выполняющая операцию разложить на множители

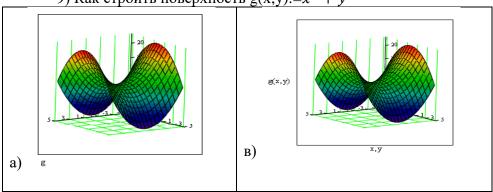
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 I
a) factor	B) expand
	7 - 1
δ) simplify	Γ) substitute

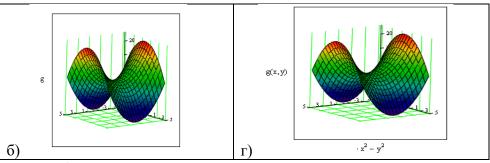
5) Введите правильный ответ:

$$x(x+1)^2 - 2x(x+3)$$
 expand,... $\to x^3 - 5x$

6) Функция gcd(a,b) находит

-/ J 1 8(
a) HOK(a,b)	в) НОД(а,b)
б) остаток от деления а на b	Γ) C_a^b


7) В окне для построения декартова графика пустое поле в середине вертикальной оси, предназначено


а) для значения, устанавливающего размер	в) для дискретной переменной
границы	
б) для функции	г) для названия оси

8) Введите правильный ответ

При построении полярного графика MathCAD показывает круг с n полями ввода, $n=\dots$

9) Как строить поверхность $g(x,y) := x^2 + y^2$

10) Установите соответствие:

а) Функция, создающая диагональную матрицу, элементы главной диагонали которой	1) diag(n)
хранятся в векторе п	
б) Ф удууууд ооо чого уулаа уулаан уулаан уулаа	2) matrix (m n f)
б) Функция, создающая и заполняющая	2) matrix(m,n,f)
матрицу, элементы которой хранятся в ј-ом столбце и і-ой строке равен значению	
функции f	
в) Функция, создающая единичную матрицу	3) identity(n)
порядка п	
г) Функция, приводящая матрицу к ступен-	4) rref(n)
чатому виду с единичным базисным мино-	
ром	

11) Введите правильный ответ:

Если задать матрицу $A:=\begin{pmatrix} 1 & 3 & 5 \\ 2 & 0 & 6 \end{pmatrix}$, то значением элемента a_{12} будет...

12) Даны матрицы $A:=\begin{pmatrix} -1 & -2 \\ -3 & -7 \end{pmatrix}$ и $B:=\begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$ тогда stack(A,B) будет равен

	\-4 - 9/	\49/
a) $\begin{pmatrix} 1 & 2 \\ 3 & 7 \\ 4 & 9 \\ -1 & -2 \\ -3 & -7 \\ -4 & -9 \end{pmatrix}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$6) \begin{pmatrix} -1 - 4 \\ -9 - 49 \\ -16 - 81 \end{pmatrix}$		$\Gamma \begin{pmatrix} -1 - 2 \\ -3 - 7 \\ -4 - 9 \\ 1 & 2 \\ 3 & 7 \\ 4 & 9 \end{pmatrix}$

13) Перед применением функции root(f(x),x) необходимо

а) упростить выражение	в) указать коэффициенты уравнения		
б) задать начальное значение х	г) указать свободные коэффициенты урав-		
	нения		

14) Решая уравнения или системы уравнений с помощью блока given-find, решение будет

а) точное	в) приближенное
б) минимальное	г) максимальное

15) Решая уравнение $x^4 - 18x^2 + 6 = \sqrt{2x}$ с помощью функции solve, то оператор будет выглядеть следующим образом

a) $x^4 - 18x^2 + 6 = \sqrt{2x}$ solve, $x \to \infty$	B) solve $(x^4 - 18x^2 + 6 - \sqrt{2x}) \rightarrow$
б) $x^4 - 18x^2 + 6 = \sqrt{2x}$ solve→	r) solve $(x^4 - 18x^2 + 6 - \sqrt{2x}), x \to$

16) Для того чтобы найти четвертую производную функции $\cos(x)$, то выражение вычисляющее производную будет выглядеть следующим образом:

$a)[\frac{d}{dx}]^4\cos(x) \rightarrow$	$B) \frac{d}{dx^4} \cos(X) \to \frac{d^4}{dx^4} \cos(X) \to$
$6)\frac{4d}{dx}\cos(x) \rightarrow$	Γ) $\frac{d^4}{dx^4}\cos(x) \rightarrow$

17) Операция разложения в ряд Тейлора функции $\sin(x)$, причем точка, в окрестности которой строится разложение, равна $\frac{\pi}{6}$, а степень старшего члена в разложении 9, будет иметь вид

a) series[sin (x); $\frac{\pi}{6}$, 9] \rightarrow	B) $\sin(x) \operatorname{series}\left[\frac{\pi}{6}, 9\right] \rightarrow$
6) $\sin(x)$ series, $x = \frac{\pi}{6}$, $9 \rightarrow$	Γ) series(sin (x)); $\frac{\pi}{6}$, 9 →

18) Какую кнопку не содержит панель математического анализа

a) $\lim_{a \to a}$	B) lim _{→a} -
б) lim _{→a} +	r) lim _{→∞}

Защита лабораторных работ

Лабораторная работа 1. Основы работы в среде MathCAD

- 1) Каковы назначение и возможности MathCAD?
- 2) Как работать с меню в MathCAD?
- 3) Как задаются переменные в MathCAD?
- 4) Какие операторы присваивания вы знаете?
- 5) Как вычисляются производные и интегралы в MathCAD?

Лабораторная работа 2. Построение графиков в среде MathCad

- 1) Как построить график?
- 2) Как построить несколько графиков в одной системе координат?
- 3) Как построить декартовый график?
- 4) Как отформатировать построенный график?
- 5) Как построить график кривой, заданной параметрически?
- 6) Как построить график в полярной системе координат?
- 7) Как построить график поверхности?

Лабораторная работа 3. Вектора и матрицы в среде MathCad

- 1) Как создать матрицу, вектор строку, вектор столбец?
- 2) Какие операторы есть для работы с матрицами?
- 3) Перечислите команды панели инструментов Матрицы.
- 4) Как вставить матричные функции?
- 5) Как выполнять вычисления, если матрица задана в символьном виде?

Лабораторная работа 4. Решение уравнений в среде MathCad

- 1) Как можно решить нелинейное уравнение в MathCAD?
- 2) Как найти начальное приближение корня уравнения?
- 3) Для чего используется функция polyroots?
- 4) Как можно решить систему линейных уравнений?
- 5) Как можно решить систему нелинейных уравнений?

Лабораторная работа 5. Исследование функций в среде MathCad

- 1) Найти точки пересечения с осями.
- 2) Выяснить является ли функция четной, нечетной или общего вида.
- 3) Найти интервалы монотонности и точки экстремума функции.
- 4) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба.
 -) Найти асимптоты графика функции.

Лабораторная работа 6. Символьные вычисления в среде MathCad

1) Разложить на множители, используя операцию Символы → Фактор;

- 2) Используя операцию Символы → Расширить, разложите по степеням полученное выражение;
- 3) Используя операцию Символы \rightarrow Подобные, сверните полученное выражение по переменной z.

Лабораторная работа 7. Программирование в среде MathCad

- 1) Составить программу функцию, вычисляющую функцию у(х)
- 2) Составить программу функцию, вычисляющую функцию f(x,y), таким образом, чтобы значения x и y не выходили за пределы области определения функции f(x,y).
 - 3) Построить графики функций y(x) и f(x,y)

3.2 Задания для промежуточной аттестации

Расчетно-графическая работа

Исходные данные:

ЗАДАНИЕ 1.

Решить 2 нелинейных уравнения с точностью до 0,0001

ЗАДАНИЕ 2.

Решить систему 2 нелинейных уравнения с точностью до 0,0001

ЗАДАНИЕ 3.

Решить дифференциальные уравнения первого и второго порядка с точностью до 0,0001

ЗАДАНИЕ 4.

Решить систему двух дифференциальных уравнений первого порядка с точностью до 0,0001

ЗАДАНИЕ 5.

Решить систему линейных уравнения с точностью до 0.0001 матричным методом. Проверку выполнить методом Крамера. Исходные данные взять из таблицы.

ЗАДАНИЕ 6.

Определите функцию f(t, a). Предварительно определив переменные ω , x, a. Покажите таблицу значений функции. Постройте графики функции f(t, a) для двух разных значений аргумента a.

ЗАДАНИЕ 7.

Для функции, равной выражению f(x, y) найдите первую и вторую частные производные по и . Вычислите частную производную по в точке (1; 0,1). Частные производные в Mathcad находятся так же, как и обычные.

ЗАДАНИЕ 8.

Решите алгебраическое уравнение

ЗАДАНИЕ 9.

Напишите программу для вычисления значений функции y для всех значений аргумента x на заданном интервале $[x_{H}, x_{K}]$ с заданным шагом d_{x} с использованием операторов ветвления if и оператора цикла for.

ЗАДАНИЕ 10.

Для заданной в варианте функции провести полное исследование и построить график.

ЗАДАНИЕ 11.

Создать статистическую совокупность, используя датчики случайных чисел. Количество чисел статистической совокупности m принять самостоятельно. Определить центр группирования статистической совокупности, величину рассеяния. Построить гистограмму с произвольными сегментами разбиения и гистограмму с разбиениями на равные сегменты.

ЗАДАНИЕ 12.

Построить график; решить систему уравнений, найти площадь, ограниченную графиками кривых

ЗАДАНИЕ 13. Требуется определить функцию, которая выполняет представленные в вариантах задания.

Лист регистрации изменений к РПД

Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц изменения	Подпись разработчика РПД