Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ¹ по дисциплине

Элементы систем автоматики

Направление подготовки	13.03.02 Элект	роэнергетика и электр	отехника
Направленность (профиль)	ц и автоматизация		
образовательной программы			
O	беспечивающее і	подразделение	
<i>Кафедра</i> «Электропр	ивод и автомати:	зация промышленных	установок»
Разработчик ФОС:			
Старший преподаватель			Савельев Д.О.
(должность, степень, ученое		(подпись)	(ФИО)
(должность, степень, ученое	званис)	(подпись)	(ΨHO)
Оценочные материалы по д	цисциплине ра	ссмотрены и одобр	ены на заседании
кафедры, протокол №	_ ot «» _	2024 г.	
Заведующий кафедрой ЭП			
эшээдугашин кифэдран этг		<u> 10p##### C.11.</u>	
		_	

¹ В данном документе представлены типовые оценочные средства. Полный комплект оценочных средств, включающий все варианты заданий (тестов, контрольных работ и др.), предлагаемых обучающемуся, хранится на кафедре в бумажном и электронном виде.

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достиже- ния	Планируемые результаты обучения по дисциплине
	Профессионалн	ьные
ПК-1 Способен проводить обследование оборудования объектов профессиональной деятельности	ПК-1.1 Знает методики определения характеристик оборудования при различных режимах работы ПК-1.2 Умеет определять параметры оборудования при различных режимах работы согласно требованиям технического задания ПК-1.3 Владеет навыками составления отчета по результатам выполненного обследования оборудования	Знать состав комплекса технических средств для автоматизированных систем управления технологическими процессами Уметь определять принципиальные решения по составу и размещению электрооборудования, кинематическим схемам, датчикам и приборам технологического контроля, системам регулирования и автоматизации, связям с другими системами Владеть навыками разработки пояснительной записки проектной документации технологических решений для систем с электроприводом

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые формируемая разделы (темы) дисциплины		Наименование оценочного сред- ства	Показатели оценки	
Раздел 1	ПК-1	Тест	Правильность выполнения задания	
Разделы 2-4	ПК-1	Задачи к экзамену	Полнота и правильность решения задач	
Разделы 2,4	ПК-1	Лабораторные ра- боты	Аргументированность ответов	
Разделы 3,4	ПК-1	Практические за- нятия	Полнота и правильность выполнения задания	
Разделы 1-4	ПК-1	Экзамен	Полнота и правильность ответов на вопросы	
Разделы 2,4	ПК-1	Расчетно- графическая рабо- та	Полнота и правильность выполнения задания	

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	ица 3 – Технолог Наименова- ние оценочного	Сроки выполне-	Шкала оце- нивания	Критерии оценивания		
	средства	ния				
	Пр	омежуточна	6 семестр я аттестация	я в форме Экзамен		
	1		,			
1	Тест	в течение семестра	9 баллов	9 баллов – 81-100 % правильных ответов – высокий уровень знаний; 6 баллов – 61-80 % правильных ответов – достаточно высокий уровень знаний; 3 балла – 41-60 % правильных ответов – средний уровень знаний; 0 баллов – 0-40 % правильных ответов – очень низкий уровень знаний		
2	Практическое занятие 1	в течение семестра	3 балла	3 балла – студент показал отличные знания, умения и навыки при решении профессиональных задач		
3	Практическое занятие 2	в течение семестра	3 балла	в рамках усвоенного учебного материала. 2 балла – студент показал хорош знания, умения и навыки при ре-		
4	Практическое занятие 3	в течение семестра	3 балла	шении профессиональных задач в рамках усвоенного учебного материала.		
5	Практическое занятие 4	в течение семестра	3 балла	1 балл – студент показал удовлетворительное владение знаниями, умениями и навыками при реше-		
6	Выполнение РГР	в течение семестра	3 балла	нии профессиональных задач в рамках усвоенного учебного материала. О баллов – студент продемонстрировал недостаточный уровень владения знаниями, умениями и навыками при решении профессиональных задач в рамках усвоенного учебного		
ИТС) ΓΟ:	-	24 баллов	-		

Критерии оценки результатов обучения по дисциплине:

 $^{0-64\,\%}$ от максимально возможной суммы баллов — «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);

^{65 - 74} % от максимально возможной суммы баллов – «удовлетворительно» (пороговый (минимальный) уровень);

	Наименова- ние оценочного средства	Сроки выполне- ния	Шкала оце- нивания	Критерии оценивания
75	010/			

75 - 84% от максимально возможной суммы баллов – «хорошо» (средний уровень); 85 - 100% от максимально возможной суммы баллов – «отлично» (высокий (максимальный) уровень)

- 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы
- 3.1 Задания для текущего контроля успеваемости

Тестовые вопросы

Раздел 1 «Классификация элементов систем автоматики и их основные характеристики»

- 1. Что называется элементом систем автоматики:
- а) любое устройство автоматической системы;
- б) конструктивно законченное устройство автоматической системы, выполняющее управляющие функции;
- в) конструктивно законченное устройство;
- г) конструктивно законченное устройство, не выполняющее управляющих функций.
- 2. По какому основному параметру отличаются силовые элементы систем автоматики от управляющих элементов:
- а) по размерам и весу;
- б) по производительности преобразования и обработки входной информации;
- в) по величине энергии, протекающей через элемент;
- г) по области применения.
- 3. По какому основному параметру отличаются управляющие элементы систем автоматики от силовых элементов:
- а) по способу преобразования входной информации элементом;
- б) по габаритам и весу;
- в) по величине энергии, протекающей через элемент;
- д) по назначению.
- 4. Какие бывают элементы систем автоматики
- а) только электрические
- б) только гидравлические и пнематические
- в) только электромеханические
- г) любые из вышеперечисленных
- 5. Какой элемент системы автоматики можно отнести к силовым:
- а) датчик тока;
- б) датчик напряжения;
- в) управляемый выпрямитель;
- г) аналогово-цифровой преобразователь.

- 6. Характеристика управления элемента системы автоматики связывает ...
- а) входную координату элемента и возмущающее воздействие
- б) выходную и входную координаты элемента систем автоматики
- в) выходную координату элемента и возмущающее воздействие
- г) входную координату элемента и текущее время
- 7. Характеристикой управления элемента системы автоматики называется зависимость между ...
- а) выходной координатой элемента и текущим временем
- б) входной координатой элемента и текущим временем
- в) выходной и входной координатами элемента при неизменном возмущающем воздействии
- г) выходной координатой элемента и возмущающим воздействием
- 8. Внешняя (нагрузочная) характеристика элемента системы автоматики связывает ...
- а) входную координату элемента и возмущающее воздействие
- б) выходную и входную координаты элемента систем автоматики
- в) выходную координату элемента и возмущающее воздействие при неизменной входной координате
- г) входную координату элемента и текущее время
- 9. Внешней (нагрузочной) характеристикой управления элемента системы автоматики называется зависимость между ...
- а) выходной и входной координатами элемента систем автоматики
- б) выходной и входной координатами элемента систем автоматики при неизменном возмущающем воздействии
- в) возмущающим воздействием и текущим временем
- г) возмущающим воздействием и входной координатой элемента системы автоматики
- 10. С помощью каких характеристик элемента системы автоматики можно оценить его линамические свойства:
- а) характеристики управления;
- б) внешней (нагрузочной) характеристики;
- в) переходных характеристик;
- г) передаточных функций элемента.
- 11. Что является наиболее полным математическим описанием процессов, протекающих в любых элементах систем автоматики:
- а) характеристики управления и внешние (нагрузочные) характеристики элемента;
- б) переходные характеристики элемента;
- в) передаточные функции элемента;
- г) составленная для элемента система уравнений, в общем случае алгебраических и дифференциальных, линейных и нелинейных, описывающая взаимосвязь между входными координатами, выходными координатами и возмущающими воздействиями.

Практические задания

Практическое задание 1. Изучение работы и характеристик гидравлических цилиндров. Цель задания: Изучить работу гидравлических цилиндров, их основные типы и методики расчета их основных характеристик.

Практическое задание 2. Изучение работы и характеристик пневматических цилиндров Цель задания: Изучить работу пневматических цилиндров, их основные типы и методики расчета их основных характеристик.

Практическое задание 3 Условные обозначения различных электропневматических и пневматических элементов на принципиальных схемах

Цель задания: Изучить условные обозначения различных электропневматических и пневматических элементов на принципиальных схемах

Практическое задание 4. Условные обозначения различных электрогидравлических и гидравлических элементов на принципиальных схемах

Цель задания: Изучить словные обозначения различных электрогидравлический и гидравлических элементов на принципиальных схемах

Расчетно-графическая работа Расчет параметров и характеристик силовых и управляющих элементов систем автоматики

Задача 1

Расчет параметров и характеристик реверсивных управляемых выпрямителей

Для реверсивной встречно-параллельной схемы управляемого тиристорного выпрямителя, работающего на активно-индуктивную нагрузку, рассчитать: среднее значение тока вентиля; действующее значение фазного тока первичных и вторичных обмоток силового трансформатора; действующее значение фазной ЭДС вторичных обмоток силового трансформатора; максимальное напряжение на вентиле; типовую мощность силового трансформатора.

Для заданного угла управления тиристорами одной из вентильных групп построить кривые: мгновенных значений токов вентилей и одной из фаз вторичной и первичной обмоток силового трансформатора; выпрямленной ЭДС на выходных зажимах выпрямителя, к которым подключается цепочка из последовательно включенных индуктивности и активного сопротивления нагрузки; выпрямленного тока нагрузки.

На этом же рисунке указать передний фронт импульса управления одним из тиристоров и построить кривую опорного напряжения для одного из каналов системы импульсно-фазового управления тиристорами.

Для пяти произвольных значений угла управления тиристорами одной из вентильных групп, охватывающих области выпрямительного и инверторного режимов, построить внешние характеристики выпрямителя.

Для трёх произвольных значений тока нагрузки, не превышающих двукратное номинальное среднее значение выпрямленного тока, построить характеристики управления силовой части выпрямителя. В числе этих характеристик должна быть и регулировочная характеристика выпрямителя, то есть характеристика управления силовой части на холостом ходу, когда ток нагрузки равен нулю. Построить характеристику управления всего управляемого выпрямителя с учётом формы опорного напряжения системы импульснофазового управления тиристорами и необходимости ограничения максимального угла управления вентильной группы, работающей в инверторном режиме, значением $17\pi/18$. Данную характеристику строить для режима холостого хода выпрямителя.

Записать формулу передаточной функции выпрямителя по управляющему воздействию и рассчитать значения входящих в нее коэффициента усиления и постоянной времени, полагая, что система управления преобразователем безынерционна и сигнал управления меняется в "малом".

Для случая раздельного управления вентильными комплектами описать логику раздельного управления вентильными комплектами, на основании которой разработать логическое переключающее устройство.

Вариант задания выбирается из табл.1 и 2 в соответствии с предпоследней и последней цифрами номера зачетной книжки.

При указанных выше построениях считать, что коммутация тиристоров протекает мгновенно. Считать, что ток нагрузки идеально сглажен, индуктивное сопротивление нагрузки стремится к бесконечности (режим с источником тока в цепи нагрузки).

Таблица 1

Предпоследняя	Силовая схема	Управление вен-	Форма опорного
цифра номера		тильными груп-	напряжения
зачетной		пами	
книжки			
0	Шестифазная нулевая	Раздельное	Пилообразное
I	Трехфазная мостовая	Раздельное	Косинусоидальное
2	Шестифазная нулевая	Совместное	Пилообразное
3	Однофазная мостовая	Раздельное	Косинусоидальное
4	Шестифазная нулевая	Раздельное	Косинусоидальное
5	Трехфазная мостовая	Раздельное	Пилообразное
6	Трехфазная нулевая	Совместное	Пилообразное
7	Однофазная нулевая	Совместное	Косинусоидальное
8	Трехфазная мостовая	Совместное	Косинусоидальное
9	Однофазная нулевая	Раздельное	Пилообразное

Таблица 2

Последняя цифра	U_{om}	E_1	$E_{d\mu}$	R_d	L_{ϕ}	α
номера зачетной	В	В	В	Ом	Гн	рад
книжки						
0	12	380	110	1,00	0,0015	$\pi/9$
1	10	220	60	2,00	0,0010	$\pi/5$
2	15	380	440	2,00	0,0009	$\pi/4$
3	12	220	220	0,50	0,0070	$2\pi/9$
4	12	110	60	0,80	0,0011	5π/12
5	10	220	440	2,50	0,0012	π/10
6	15	380	110	0,25	0,0014	3π/10
7	12	110	110	1,50	0,0017	$\pi/3$
8	10	110	220	0,75	0,0005	4π/12
9	15	220	110	1,20	0,0011	π/18

Частота напряжения питающей сети 50 Γ ц, длина рабочего линейного участка пилообразного опорного напряжения равна π рад.

В табл. 2 приняты обозначения:

 U_{om} - амплитуда опорного напряжения системы управления;

 E_1 - действующее значение линейной ЭДС питающей сети;

 E_{dh} - номинальное среднее значение выпрямленной ЭДС (среднее значение выпрямленного напряжения на выходе выпрямителя при угле управления одной из вентильных групп,

равном $\pi/18$, и отсутствии тока нагрузки);

 R_d - активное сопротивление нагрузки;

 L_{ϕ} - приведенная к цепи выпрямленного тока индуктивность рассеяния фазы силового трансформатора;

 α - угол управления тиристорами одной из вентильных групп, для которого строятся диаграммы мгновенных значений токов и напряжений на элементах схемы выпрямителя.

Задача 2

Синтез по заданным параметрам схем регуляторов и корректирующих звеньев на основе операционных усилителей

Для указанной в табл. 1 передаточной функции $W(p) = U_{\rm вых}(p)/U_{\rm ex}(p)$, где $U_{\rm выx}(p)$, $U_{\rm ex}(p)$ - изображения по Лапласу входной и выходной координат, привести упрощенную принципиальную схему звена, реализующего эту функцию, полагая, что оно выполнено на основе одного или нескольких операционных усилителей. Рассчитать значения активных и реактивных сопротивлений во входных цепях и цепях обратной связи операционных усилителей, при которых будут получены параметры указанной в задании передаточной функции.

Вид передаточной функции и ее параметры выбираются из табл. 1 в соответствии с предпоследней и последней цифрами номера зачетной книжки.

Таблица 1

Предпоследняя	Передаточная	Последняя	Коэф-	Посто-	Посто-
цифра номера	ϕ ункция $W(p)$	цифра номера	фици-	янная	янная
зачетной книж-		зачетной	ент k	времени	времени
ки		книжки		T_1 , c	T_2 , c
0	$k(T_1p+1)+1/(T_2p+1)$	0	1,25	0,01	0,05
)				
1	$k+T_1p$	1	5,50	0,02	0,10
2	$k+T_1p+1/(T_2p)$	2	7,80	0,10	0,15
3	$k/(T_1p+1)$	3	0,50	0,20	0,30
4	$k+1/(T_1p)$	4	0,20	0,25	0,35
5	$k/[(T_1p+1)(T_2p1)]$	5	9,60	0,40	0,20
6	$k+1/(T_1p+1)$	6	13,00	0,10	0,15
7	$k(T_1p+1)/(T_2p+1)$	7	6,60	0,70	0,33
8	$1/(T_1p)+k/(T_2p+1)$	8	0,80	0,05	0,25
9	$k/[T_1p(T_2p+1)]$	9	10,00	0,44	0,23