Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета ФМХТ Саблин П.А.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Исследование объектов машиностроения в САЕ-системах

Направление подготовки	15.04.05 Конструкторско-технологическое обеспечение
	машиностроительных производств
Направленность (профиль)	Технология машиностроения
образовательной программы	

Обеспечивающее подразделение
Кафедра «Машиностроение»

Разработчик рабочей программы:	
Доцент каф. МС, канд. техн. наук, доц	Серебренникова А.Г.
(должность, степень, ученое звание)	(ФИО)
СОГЛАСОВАНО:	
Заведующий кафедрой	Отряскина Т.А.
«Машинострое-	(наименование кафедры)
ние» (наименование кафедры)	(паименование кафедры)
Заведующий кафедрой	Отряскина Т.А.
«Машинострое-	
ние»	(наименование кафедры)
(наименование кафедры)	

1 Общие положения

Рабочая программа дисциплины «Исследование объектов машиностроения в САЕ-системах» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 1045 от 17 августа 2020 года, и основной профессиональной образовательной программы подготовки «Технология машиностроения» по направлению подготовки 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств».

Задачи дисци-плины	 Изучение расширенных функций программного комплекса NX для создания и исследования объектов машиностроения; Проведение инженерного анализа объектов машиностроения с целью усовершенствования оснастки, траектории работы оборудования.
Основные разделы / темы дисциплины	1 Создание моделей деталей в программном комплексе NX 2 Создание моделей сборок в программном комплексе NX . 3 Возможности программного комплекса NX при решении инженерных задач: 3.1 Моделирование формы вала в продольном сечении 3.2 Моделирование формы и оценка прочности ступенчатого вала, установленного в подшипниках 3.3 Моделирование формы и оценка прочности вилки 3.4 Анализ устойчивости пластины 3.5 Моделирование температурного поля цилиндрического стержня 3.6 Моделирование температурного поля пластины в процессе охлаждения 3.7 Моделирование температурной деформации резца в процессе точения

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Исследование объектов машиностроения в САЕ-системах» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой:

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональные	
ОПК-6 Способен разрабатывать и применять алгоритмы и современные цифровые системы автоматизированного проектирования производ-	ОПК-6.1 Знает современные цифровые системы автоматизированного проектирования производственно-технологической подготовки машиностроительных производств ОПК-6.2 Умеет разрабатывать	Знания о различных системах инженерного анализа Умения применять знании в практическом применении при

объ- ьных
ьных
CAE-
лич-
лиза
3

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе Оценочные материалы, размещенном на сайте университета www.knastu.ru / Наш университет / Образование / «Конструкторско-технологическое обеспечение машиностроительных производств» 15.04.05 /Оценочные материалы).

Дисциплина «Исследование объектов машиностроения в САЕ-системах» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем выполнения лабораторных работ и РГР.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Исследование объектов машиностроения в САЕ-системах» изучается на 2 курсе, 3 семестре.

Общая трудоемкость (объем) дисциплины составляет 4 з.е., 144 ч, в том числе контактная работа обучающихся с преподавателем 24 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся, 120 ч.

	Виды учебной работы, включая самостоятельную				ную	
	работ	работу обучающихся и трудое				(x)
	Контактная работа					
Наименование разделов, тем и	преподавателя с обучающи-					
содержание материала	мися			ИКР	Пром.	CP
	Лек-	Практи-	Лабора-	YIKI	аттест.	C
		ческие	торные			
	ции	занятия	работы			
1 Моделирование формы вала в			4(1*)			20
продольном сечении	-		4(1*)			20

			боты, вклю цихся и тру			-
Наименование разделов, тем и содержание материала	Контактная работа преподавателя с обучающи-мися			Пром.	СР	
	Лек- ции	Практи- ческие занятия	Лабора- торные работы	ИКР	аттест.	C
2 Моделирование формы и оценка прочности ступенчатого вала, установленного в подшипниках	-		4(1*)			20
3 Моделирование формы и оценка прочности вилки	-		4			20
4 Анализ устойчивости пластины	-		4(1*)			20
5 Моделирование температурного поля цилиндрического стержня	-		4(1*)			20
6 Моделирование температурного поля пластины в процессе охлаждения	-		4			20
Зачет с оценкой	-	-	-	-	-	-
ИТОГО по дисциплине	-	-	24 в том числе в форме практи- ческой подго- товки: 4	-	-	120

^{*} реализуется в форме практической подготовки

4.2 Структура и содержание дисциплины для очно-заочной формы обучения

Дисциплина «Исследование объектов машиностроения в САЕ-системах» изучается на 2 курсе, 3 семестре.

Общая трудоемкость (объем) дисциплины составляет 4 з.е., 144 ч, в том числе контактная работа обучающихся с преподавателем 24 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся, 120 ч.

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)				-	
	Кон	Контактная работа				
Наименование разделов, тем и	препода	вателя с об	бучающи-			
содержание материала		мися		ИКР	Пром.	CP
	Лек-	Практи-	Лабора-	YIKI	аттест.	С
		ческие	торные			
	ции	занятия	работы			
1 Моделирование формы вала в	_		4(1*)			20
продольном сечении			'(1')			20

	-	чебной раб				-
		ту обучающ		доемкос	ть (в часа	x)
		нтактная ра				
Наименование разделов, тем и	препода	вателя с об	бучающи-			
содержание материала		мися		ИКР	Пром.	CP
	Пог	Практи-	Лабора-	YIKI	аттест.	C
	Лек-	ческие	торные			
	ции	занятия	работы			
2 Моделирование формы и			•			
оценка прочности ступенчатого			4 (1 %)			20
вала, установленного в подшип-	-		4(1*)			20
никах						
3 Моделирование формы и			,			20
оценка прочности вилки	-		4			20
4 Анализ устойчивости пластины	-		4(1*)			20
5 Моделирование температур-						
ного поля цилиндрического	_		4(1*)			20
стержня			, ,			
6 Моделирование температур-						
ного поля пластины в процессе	_		4			20
охлаждения						
Зачет с оценкой	-	-	-	-	-	-
ИТОГО			24			
по дисциплине			в том			
			числе в			
	-		форме			120
		-	практи-	-	-	120
			ческой			
			подго-			
			товки: 4			

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете — раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / «Конструкторско-технологическое обеспечение машиностроительных производств» 15.04.05 / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

1 РД ФГБОУ ВО «КнАГТУ» 013-2016. Текстовые студенческие работы. Правила оформления. – Введ. 2016-03-04. – Комсомольск-на-Амуре : ФГБОУ ВО «КнАГТУ», 2016. – 55 с.

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающемуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет / Образование / «Конструкторско-технологическое обеспечение машиностроительных производств» 15.04.05 / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 15.00.00 «Машиностроение» https://knastu.ru/page/539, а так же:

- 1 Единое окно доступа к образовательным ресурсам // Электронный ресурс [Режим доступа: свободный] http://window.edu.ru/.
- 2 Национальный открытый университет ИНТУИТ // Электронный ресурс [Режим доступа: свободный] http://www.intuit.ru.

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого при-

менения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.3 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.4 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

7.5.2 Методические указания по самостоятельной работе над изучаемым материалом и при подготовке к практическим занятиям

В связи с тем, что учебный план не предусматривает проведения лекционных занятий по данной дисциплине, изучение теоретических разделов выполняется самостоятельно. Начинать надо с изучения рекомендованной литературы. Особое внимание необходимо обратить на содержание основных положений и выводов, объяснение явлений и фактов, уяснение практического приложения рассматриваемых теоретических вопросов. В процессе этой работы необходимо стремиться понять и запомнить основные положения рассматриваемого материала, примеры, поясняющие его, а также разобраться в иллюстративном материале.

Чтобы выполнить весь объем самостоятельной работы в установленные сроки, необходимо заниматься по 1-2 часа ежедневно. Начинать самостоятельные внеаудиторные занятия следует с первых же дней семестра. Первые дни семестра очень важны для того, чтобы включиться в работу, установить определенный порядок, равномерный ритм на весь семестр. Ритм в работе — это ежедневные самостоятельные занятия, желательно в одни и те же часы, при целесообразном чередовании занятий с перерывами для отдыха.

Начиная работу, не нужно стремиться делать вначале самую тяжелую ее часть, надо выбрать что-нибудь среднее по трудности, затем перейти к более трудной работе. И напоследок оставить легкую часть, требующую не столько больших интеллектуальных усилий, сколько определенных моторных действий (черчение, построение графиков и т.п.).

Следует правильно организовать свои занятия по времени: 50 минут — работа, 5-10 минут — перерыв. Иначе нарастающее утомление повлечет неустойчивость внимания. Очень существенным фактором, влияющим на повышение умственной работоспособности, являются систематические занятия физической культурой. Организация активного отдыха

предусматривает чередование умственной и физической деятельности, что полностью восстанавливает работоспособность.

7.5.3 Методические указания по выполнению РГР

При выполнении РГР студенту необходимо проанализировать, систематизировать и изучить информацию в сети Интернет и в технической и справочной литературе. Работа не должна представлять пересказ отдельных глав учебника или учебного пособия. Необходимо изложить собственные соображения по существу излагаемых вопросов, внести свои предложения.

При подготовке к защите РГР студенту необходимо обратить внимание как на проработку теоретических вопросов по данной теме, так и на обоснование выбора технического решения.

При оформлении отчета к РГР необходимо строго следовать РД ФГБОУ ВО «КнАГТУ» 013-2016. «Текстовые студенческие работы. Правила оформления».

После успешного выполнения и защиты контрольной работы отчет по РГР студенту необходимо разместить в его личном кабинете, расположенном на официальном сайте университета в информационно-телекоммуникационной сети «Интернет» по адресу https://student.knastu.ru.

8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)

8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по лиспиплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Наш университет / Образование / «Конструкторскотехнологическое обеспечение машиностроительных производств» 15.04.05 / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/192810.1

8.2 Учебно-лабораторное оборудование

Наименование аудитории (лаборатории)	Используемое оборудование
Лаборатория информацион-	ПЭВМ
ных технологий в профессио-	
нальной деятельности	

8.3 Технические и электронные средства обучения

Лабораторные занятия.

Для практических занятий используется аудитория, оснащенная оборудованием, указанным в п. 8.2.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорно-двигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.