Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета авиационной и морской техники О.А. Красильникова

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Вычислительная механика»

Направление подготовки	24.05.07 «Самолето- и вертолетостроение»
Направленность (профиль)	«Самолетостроение»
образовательной программы	«Симолетостроение»

Обеспечивающее подразделение	
Кафедра «Авиастроение»	

Разработчик рабочей программы:

Профессор кафедры «Авиастроение», доцент, доктор физико-математических наук

Бормотин К.С

СОГЛАСОВАНО:

Заведующий кафедрой «Авиастроение»

Марьин С.Б.

1 Общие положения

Рабочая программа дисциплины «Вычислительная механика» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 877 от 04.08.2020, и основной профессиональной образовательной программы подготовки «Самолетостроение» по направлению 24.05.07 Самолето- и вертолетостроение.

Задачи	- Рассмотреть численные методы и основы технологии конечно-			
дисциплины	элементного анализа;			
	- Рассмотреть возможностями современных конечно-элементных про-			
	граммных комплексов для решения задач механики;			
	- Формирование умения и навыков использования конечно-элементных			
	программных комплексов для проведения расчетов напряженно-			
	деформированного состояния конструкций.			
Основные	Раздел 1. Основные положения метода конечных элементов:			
разделы / темы	Раздел 2. Метод конечных элементов в плоском напряженном и плоском			
дисциплины	деформированном состоянии:			
	Раздел 3. Метод конечных элементов для трехмерных конструкций:			
	Раздел 4. Функции формы элемента. Численное интегрирование.			
	Раздел 5. Конечно-элементный анализ пластин и оболочек.			
	Раздел 6. Задачи о стационарных полях. Динамические уравнения при			
	периодической нагрузке.			
	Раздел 7. Собственные частоты и формы колебаний.			
	Раздел 8. Физически нелинейные задачи.			

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Вычислительная механика» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой:

Код и наименование	Индикаторы достижения	Планируемые результаты обу-		
компетенции		чения по дисциплине		
Общепрофессиональные				
ОПК-5 Способен	ОПК-5.1 Знает физические и ма-	Знать: основные соотношения		
разрабатывать физи-	тематические модели процессов	метода конечных элементов,		
ческие и математиче-	изготовления деталей, узлов и	используемые для решения за-		
ские модели иссле-	агрегатов авиационных кон- струкций	дач механики деформируемого твердого тела.		
дуемых процессов,	ОПК-5.2 Умеет использовать ме-	Уметь: использовать конечно-		
явлений и объектов,	тоды физического и математиче-	элементные программные ком-		
относящихся к про-	ского моделирования	плексы для проведения инже-		
фессиональной сфере	ОПК-5.3 Умеет применять ос-	нерных расчетов конструкций		
деятельности для	новные методы физико-	на прочность и жесткость.		
решения инженер-	математического анализа для	Владеть: навыками работы с		
ных задач	решения конкретных инженер-	современными системами ком-		
пыл эада г	ных задач	пьютерного инжиниринга		
		(САЕ-системами).		

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе *Оценочные материалы*, размещенном на сайте университета www.knastu.ru / Haш университет / Образование / Самолето-и вертолетостроение / Оценочные материалы).

Дисциплина «Вычислительная механика» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения лабораторных работ, самостоятельных работ.

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Вычислительная механика» изучается на 4, 5 курсах в 8, 9 семестрах.

Общая трудоёмкость дисциплины составляет 6 з.е., 216 ч., в том числе контактная работа обучающихся с преподавателем 98 ч., промежуточная аттестация в форме зачета, зачета с оценкой, самостоятельная работа обучающихся 120 ч.

	-	-	ты, включа		-	-
	бот	у обучающ	ихся и труд	оемкост	ь (в часах)
	Ког	нтактная ра	бота			
Наименование разделов, тем и со-	препода	вателя с об	учающи-		Пром.	CPC
держание материала		мися		ИКР		
		Практи-	Лабора-	MKP	аттест.	CPC
	Лекции	ческие	торные			
		занятия	работы			
	8 семест	р, 4 курс	<u>. </u>			
Раздел 1. Основные г	оложени	я метода к	онечных э.	пементо	В.	
Тема 1. Конечные элементы						
упругой среды.						
Свойства конечных элементов.						
Метод перемеще-						
ний.Эквивалентные узловые силы.	3					2
Метод перемещений как миними-						
зация полной потенциальной						
энергии. Архитектура						
MSC.Patran.						
Тема 2. Обобщение понятия ко-						
нечных элементов.						
Вариационные задачи. Критерии	2					2
сходимости. Неузловые парамет-						
ры. Метод Галеркина.						
Тема 3. Расчет МКЭ простран-						
ственной стержневой конструк-			6*			2
ции.						
Раздел 2. Метод конечных элемен	тов в пло	ском напр	яженном и	и плоско	м деформ	иро-

			ты, включа			
	боту обучающихся и трудоемкость (в часах))	
		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об	учающи-			
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riiti	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
	ванном со	остоянии.				
Тема 1. Треугольные конечные						
элементы.						
Функции перемещений. Матрица	1					3
деформаций. Начальная дефор-						
мация.						
Тема 2. Матрица жесткости.						
Объемные силы.						
Матрица упругости для плоского						
напряженного состояния и для	2					2
плоского дефомированного со-	2					3
стояния в изотропном материа-						
ле. Анизотропные материалы.						
Матрица жесткости. Узловые						
силы.						
Тема 3. Расчет МКЭ плоской			8*			10
задачи теории упругости.			O			10
Раздел 3. Метод конечнь	іх элемент	гов для тр	ехмерных і	констру	кций.	
Тема 1. Исследование трехмер-						
ного напряженного состояния.						
Функции перемещений. Матрица	2					2
деформаций. Матрица упругости.	2					3
Матрица жесткости, напряже-						
ний и нагрузок.						
Тема 2. Расчет МКЭ объемной						
задачи теории упругости.			10*			10
Раздел 4. Функции фор	мы эпеме	нта Чиспа	 Риное инте	гиипова	ние	
Тема 1. Прямоугольные элемен-	WIBI STENIC	mia. Inch		рпрова		
ты.						
Лагранжево и Сирендипово се-	2					5
мейство. Прямоугольные призмы.						
Тема 2. Семейство треугольных						
элементов.	2					5
L-координаты. Функции формы.						
Тетраэдральные элементы.						
Тема 3. Вычисление матриц						
элемента в криволинейных ко-						
ординатах.						
Геометрическое соответствие	2					5
элементов. Условие непрерывно-						
сти неизвестной функции. Вычис-						
ление матриц элемента. Квадра-						
тура Ньютона-Котеса, Гаусса.						
· · · · · · · · · · · · · · · · · · ·			ı			

	Виды уч	ебной рабо	ты, включа	я самос	гоятельну	ю ра-
	боту обучающихся и трудоемкость (в часах))	
	Кон	нтактная ра	ьбота ————			
Наименование разделов, тем и со-	препода	вателя с об	бучающи-			
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	YINY	аттест.	CrC
	Лекции	ческие	торные			
		занятия	работы			
Тема 4. Метод ISO MESH для						
построения сетки конечных			8			
элементов. Функция для постро-						10
ения конечно-элементной модели						10
конструкции. Пост-процессорная						
обработка результатов.						
Зачет	-	-	-	-	-	-
	9 семест	р, 5 курс				-
Раздел 5. Конечно-э.	лементны	ій анализ і	ластин и (болоче	к	
Тема 1. Формулировка задач об	2					
изгибе пластин.						
Тема 2. Задача об изгибе пла-			8*			
стин.			8**			
Тема 3. Формулировка задач	2					
для оболочечных элементов	2					
Тема 4. Задача об изгибе обо-			0.4			
лочки.			8*			
Тема 5. Формулировка задач						
для толстостенных оболочеч-	2					
ных элементов						
Раздел 6. Задачи о стационарны	х полях. Д	Тинамичес	кие уравн	ения пр	и периоді	иче-
_	ской на	грузке.			_	
Тема 1. Задачи о стационарных						
полях. Экстремальная пробле-	4					
ма. Динамические уравнения	4					
при периодической нагрузке.						
Тема 2. Решение динамических			8*			
задач			8.			
Раздел 7. Собств	енные час	стоты и фо	рмы колеб	аний		
Тема 1. Решение задачи о соб-	2					
ственных значениях	2					
Раздел 8. Ф	изически	нелинейн	ые задачи			
Тема 1. Общие подходы. Метод						
Ньютона-Рафсона. Пластич-	4					
ность. Ползучесть.						
Тема 2. Решение геометрически			8*			
и физически нелинейных задач			O ·			
Зачет с оценкой	-	ı	-	-	-	-
ИТОГО			64			
по дисциплине			в том			
	32	0	числе в	0	0	120
			форме			
			практи-			
•						•

			оты, включа ихся и труд			
	Ког	нтактная ра	бота			
Наименование разделов, тем и со-	препода	преподавателя с обучающи-				
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riixi	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
			ческой			
			подго-			
			товки:64			

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете – раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / Самолето- и вертолетостроение / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;

- самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
- использовать для самопроверки материалы фонда оценочных средств.

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающимуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет / Образование / Самолето- и вертолетостроение / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Название сайта	Электронный адрес
Электронные информационные ресурсы издательства Springer Springer Journals	https://link.springer.com
Политематическая реферативно- библиографическая и наукометрическая база данных Web of Science	http://apps.webofknowledge.com
База данных международных индексов научного цитирования Scopus	https://www.scopus.com
Электронная платформа для доступа к регулярно обновляемым базам данных по материаловедению издательства Springer	https://materials.springer.com
Сетевая электронная библиотека (СЭБ) технических вузов на платформе ЭБС "Лань" (Ссылка на издания по авиационной и ракетно-космической технике	https://e.lanbook.com/books/18167
Издания Самарского государственного университета.	http://repo.ssau.ru/handle/01-Uchebnye-materialy/79?subject_page=1)

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

7.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;

- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.5 Методические рекомендации для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.
 - 8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)
 - 8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Haw yниверситет / Образование / Самолето- и вертолетостроение / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Наименование аудитории (лаборатории)	Используемое оборудование
Ауд. 225 3 корпус Мультиме-	Экран, мультимедиа проектор, персональные компью-
дийный класс	теры

8.3 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Лабораторные занятия.

Для лабораторных занятий используется аудитория, оснащенная оборудованием, указанным в табл. п. 8.2. Процесс обучения сопровождается использованием компьютерных программ: University MD FEA Bundle (Nastran, Patran, Marc), OnlyOffice.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.