Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ Декан ФМХТ<u>П.А. Саблин</u>

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Аддитивные технологии в машиностроении»

Направление подготовки	15.03.05 Конструкторско-технологическое обеспечение
	машиностроительных производств
Направленность (профиль)	Технология машиностроения
образовательной программы	

Обеспечивающее і	подразделение
Кафедра «Машиностроение»	

Разработчик рабочей программы:

Доцент каф. МС, канд. техн. наук, доц Щелкунов Е.Б. (должность, степень, ученое звание) (ФИО)

СОГЛАСОВАНО:

Заведующий кафедрой Машиностроение Отряскина Т.А. (наименование кафедры) (ФИО)

1 Общие положения

Рабочая программа дисциплины «Аддитивные технологии в машиностроении» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 1044 от 17 августа 2020 года, и основной профессиональной образовательной программы подготовки «Технология машиностроения» по направлению 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств.

Задачи	- сформировать системное представление об исторических предпосылках
дисциплины	появления аддитивных технологи;
	- изучение информации о машинах и оборудовании для выращивания
	изделий из различных расходных материалов;
	- усвоение алгоритма изготовления изделий с применением 3D принтера
	- приобретение навыка проведения контроля качества готового изделия
Основные	Основные термины и определения. Аппаратурная база аддитивных тех-
разделы / темы	нологий. Методы и средства прецизионных измерений сложных деталей.
дисциплины	Теоретические основы производства изделий методом послойного синте-
	за

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Процесс изучения дисциплины «Аддитивные технологии» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой:

Код и наименование	Индикаторы достижения	Планируемые результаты обу-		
компетенции		чения по дисциплине		
Профессиональные				
ПК-1 Способен раз-	ПК-1.1 Знает параметры и ре-	Знать: материалы, применяе-		
рабатывать техноло-	жимы технологических процес-	мые для изготовления деталей		
гические процессы	сов изготовления изделий маши-	методами послойного наращи-		
изготовления маши-	ностроения; принципы выбора	вания;		
ностроительных из-	средств технологического осна-	принципы выбора технологи-		
делий	щения; нормативно-технические ческого оборудования дл			
	и руководящие документы в об-	лизации аддитивных техноло-		
	ласти технологичности; техноло-	гий;		
	гические факторы, вызывающие	технологические факторы, вы-		
	погрешности изготовления ма-	зывающие погрешности изго-		
	шиностроительных изделий;	товления изделий методом по-		
	возможности и порядок работы в	слойного наращивания		
	CAD-системах	Уметь: анализировать кон-		
	ПК-1.2 Умеет определять техно-	структивные особенности де-		
	логические возможности средств	талей, изготавливаемых мето-		
	технологического оснащения	дами послойного наращива-		
	для реализации технологических	ния;		
	процессов изготовления маши-	выбирать технологическое		
	ностроительных изделий; выби-	оборудование для реализации		
	рать технологические режимы	разработанного технологиче-		
	технологических операций; ис-	ского процесса изготовления		
	пользовать CAD-системы,	деталей методами послойного		

САРР-системы для редактирования типовых технологических процессов

ПК-1.3 Владеет навыками выбора средств технологического оснащения для технологических процессов изготовления изделий машиностроения; разработки технологических операций изготовления изделий машиностроения; оформления технологической документации на технологические процессы изготовления изделий машиностроения

наращивания

проводить контроль качества готовых деталей, изготовленных методами аддитивных технологий

Владеть: навыком определения конструктивных особенностей деталей, изготавливаемых методами послойного наращивания;

навыком выбора технологических методов изготовления деталей методом послойного наращивания

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе Оценочные материалы, размещенном на сайте университета www.knastu.ru / Наш университет / Образование / «15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств» /Оценочные материалы).

Дисциплина «Аддитивные технологии» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения лабораторных работ, самостоятельных работ.

Практическая подготовка реализуется на основе: Профессионального стандарта 40.031 «Специалист по технологиям механосборочного производства в машиностроении» Обобщенная трудовая функция: С Технологическая подготовка производства машиностроительных изделий средней сложности.

Дисциплина «Аддитивные технологии» в рамках воспитательной работы направлена на воспитание чувства ответственности, умения самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий.

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Аддитивные технологии» изучается на 4 курсе 7 семестре.

Общая трудоёмкость дисциплины составляет 4 з.е., 144 ч., в том числе контактная работа обучающихся с преподавателем 48 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся 96 ч.

	_	-	оты, включа ихся и труд		•	-
		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об	бучающи-			
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riiti	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
Тема 1. Введение. Основные						
термины и определения						
Цель и задачи дисциплины, ее						
связь с другими дисциплинами.						
Понятие аддитивные технологии.	3,0	6,0				14
Исторические предпосылки появ-						
ления аддитивных технологий.						
Применение аддитивных техноло-						
гий. Этапы создания изделия						
Тема 2. Процессы создания 3d						
объектов: UV-облучение, экстру-	2.0	6.0				20
зия, струйное напыление, сплав-	3,0	6,0				20
ление, ламинирование						
Тема 3 Аппаратная база адди-						
тивных технологий						
Оборудование и расходноые ма-						
териалы. Принцип действия и	4,0	8,0				25
особенности эксплуатации обору-	,	,				
дования для изготовления изделий						
методом послойного синтеза.						
Тема 4 Методы создания и кор-						
ректировки компьютерных мо-						
делей						
Моделирование и доработка изде-	2.0	- 0				2.2
лий в компьютерных программах	3,0	6,0				23
для 3D печати. Реинжиниринг и						
контроль точности оцифрованных						
моделей.						
Тема 5 Теоретические основы						
производства изделий методом						
послойного синтеза						
Технологический процесс и слай-						
синг для изготовления изделий.	3,0	6,0				14
Контроль качества готового изде-		5,0				-
лия. Постобработка изделий, по-						
лученных методами аддитивных						
технологий						
Зачет с оценкой. Проводится на по-						
следнем занятии семинарского типа	-	-		-		-
ИТОГО	16	32				06
по дисциплине		16*				96
* реализуется в форме практинеской			•	•	•	

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете – раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / «15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств» / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

Щелкунов Е.Б. Практические задания по дисциплине «Аддитивные технологии» - Комсомольск-на-Амуре : ФГБОУ ВО «КнАГУ», 2020. – 3 с.

РД ФГБОУ ВО «КнАГТУ» 013-2016. Текстовые студенческие работы. Правила оформления. – Введ. 2016-03-04. – Комсомольск-на-Амуре : ФГБОУ ВО «КнАГТУ», 2016. – 55 с.

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающимуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет / Образование / «15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств» / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 15.00.00 «Машиностроение» *https://knastu.ru/page/539*, а так же:

1 Единое окно доступа к образовательным ресурсам // Электронный ресурс [Режим доступа: свободный] http://window.edu.ru/.

2 Национальный открытый университет ИНТУИТ // Электронный ресурс [Режим доступа: свободный] http://www.intuit.ru.

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

7.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

7.5.1 Методические указания по самостоятельной работе над изучаемым материалом и при подготовке к практическим занятиям

В связи с тем, что учебный план не предусматривает проведения лекционных занятий по данной дисциплине, изучение теоретических разделов выполняется самостоятельно. Начинать надо с изучения рекомендованной литературы. Особое внимание необходимо обратить на содержание основных положений и выводов, объяснение явлений и фактов, уяснение практического приложения рассматриваемых теоретических вопросов. В процессе этой работы необходимо стремиться понять и запомнить основные положения рассматриваемого материала, примеры, поясняющие его, а также разобраться в иллюстративном материале.

Чтобы выполнить весь объем самостоятельной работы в установленные сроки, необходимо заниматься по 1-2 часа ежедневно. Начинать самостоятельные внеаудиторные занятия следует с первых же дней семестра. Первые дни семестра очень важны для того, чтобы включиться в работу, установить определенный порядок, равномерный ритм на весь семестр. Ритм в работе — это ежедневные самостоятельные занятия, желательно в одни и те же часы, при целесообразном чередовании занятий с перерывами для отдыха.

Начиная работу, не нужно стремиться делать вначале самую тяжелую ее часть, надо выбрать что-нибудь среднее по трудности, затем перейти к более трудной работе. И напоследок оставить легкую часть, требующую не столько больших интеллектуальных усилий, сколько определенных моторных действий (черчение, построение графиков и т.п.).

Следует правильно организовать свои занятия по времени: 50 минут — работа, 5-10 минут — перерыв. Иначе нарастающее утомление повлечет неустойчивость внимания. Очень существенным фактором, влияющим на повышение умственной работоспособности, являются систематические занятия физической культурой. Организация активного отдыха предусматривает чередование умственной и физической деятельности, что полностью восстанавливает работоспособность.

7.5.2 Методические указания по выполнению РГР работы

При выполнении РГР студенту необходимо проанализировать, систематизировать и изучить информацию в сети Интернет и в технической и справочной литературе. Работа не должна представлять пересказ отдельных глав учебника или учебного пособия. Необходимо изложить собственные соображения по существу излагаемых вопросов, внести свои предложения.

При подготовке к защите РГР студенту необходимо обратить внимание как на проработку теоретических вопросов по данной теме, так и на обоснование выбора технического решения.

При оформлении отчета к РГР необходимо строго следовать РД ФГБОУ ВО «КнАГТУ» 013-2016. «Текстовые студенческие работы. Правила оформления».

После успешного выполнения и защиты РГР отчет по контрольной работе студенту необходимо разместить в его личном кабинете, расположенном на официальном сайте университета в информационно-телекоммуникационной сети «Интернет» по адресу https://student.knastu.ru.

- 8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)
- 8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на

сайте университета www.knastu.ru / Наш университет / Образование / «15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств» / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Аудитория	Наименование аудитории (лабора- тории)	Используемое оборудование
Аудитория с вы- ходом в интернет + локальное со- единение	Лекционная ауди- тория	Компьютер IBM PC, видеопроектор
Лаборатория	Лаборатория быстрого прототипирования	3D-принтер ZPrinter 250, Dimension

8.3 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Для реализации дисциплины подготовлены презентации:

Аддитивные технологии;

3D-принтеры.

Аудитории для лабораторных занятий укомплектованы специализированной мебелью и техническими средствами обучения, лабораторным оборудованием.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 204 корпус № 2).

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необ-

ходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.