Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольск» й-на-Амуре государственный технический университет»

Кафедра «Промышленная электроника»

УТВЕРЖДАЮ

Первый проректор ФГБОУ ВПО «КнАГТУ»

А.Р. Куделько 2012 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (курса) <u>«Твердотельная электроника»</u> основной образовательной программы подготовки дипломированных специалистов по специальности <u>210106 – «Промышленная электроника»</u>

Форма обучения

очная

Технология обучения

традиционная

Объем дисциплины

120 часов 4,5 зачетных единицы

Рабочая программа обсуждена и одобрена на заседании кафедры

«Промышленная электроника»	
Заведующий кафедрой	<u>Срамя мов</u> С.М. Копытов «»2012 г.
СОГЛАСОВАНО	
Начальник учебно-методического управлен	ния <u>АСида</u> А.А. Скрипилев « <u>25</u> » <u>O</u> 9 2012 г.
Декан электротехнического факультета	«» А.Н. Степанов 2012 г.
Рабочая программа рассмотрена, одоб использованию методической комиссией эл	
Председатель методической комиссии	—————————————————————————————————————
Автор рабочей программы	
к.т.н., доцент	<u> [Коното в</u> С.М. Копытов « <u>19</u> » <u>09</u> 2012 г.

ВВЕДЕНИЕ

Область профессиональной деятельности выпускника по специальности 210106 «Промышленная электроника» включает в себя совокупность средств, способов и методов человеческой деятельности, направленной на исследование, моделирование, разработку, производство и эксплуатацию материалов, компонентов, приборов и устройств различного назначения вакуумной, плазменной, твердотельной, микро- и наноэлектроники.

Объектами профессиональной деятельности выпускника по направлению «Электроника и микроэлектроника», в зависимости от содержания конкретной образовательной программы (специальности), являются материалы, компоненты, приборы и устройства электронной и микросистемной техники, технологические процессы их изготовления, методы исследования, проектирования и конструирования, диагностическое и технологическое оборудование, математические модели процессов и объектов электроники и микроэлектроники, алгоритмы решения типовых задач, относящихся к профессиональной сфере.

Инженер по специальности 210106 должен выполнять следующие виды профессиональной деятельности:

- 1) экспериментально-исследовательскую;
- 2) проектно-конструкторскую;
- 3) производственно-технологическую;
- 4) организационно-управленческую;
- 5) эксплуатационное и сервисное обслуживание.

Для решения профессиональных задач инженер:

- **Ø** осуществляет сбор, обработку, анализ и систематизацию научнотехнической информации по теме исследований;
- **Ø** изучает специальную литературу и другую научно-техническую информацию, достижения отечественной и зарубежной науки и техники в области материаловедения, элементной базы и устройств электронной и микросистемной техники;
- **Ø** проводит экспериментальные исследования объектов электроники с целью их модернизации или создания новых материалов, приборов или их технологий;
- **Ø** составляет описания проводимых исследований, готовит данные для составления отчетов, обзоров и другой документации;
- **Ø** выполняет математическое моделирование структур, приборов или технологических процессов с целью оптимизации их параметров;
- **Ø** участвует в проектировании, конструировании и модернизации приборов и устройств электронной техники на схемотехническом и элементном уровне;

Ø разрабатывает проектную и рабочую техническую документацию, оформляет законченные научно-исследовательские и проектно-конструкторские работы.

Выпускник должен уметь решать профессиональные задачи, соответствующие его квалификации, указанной в п. 1.4.5 ГОС специальности.

Данная рабочая программа предназначена для студентов дневной формы обучения, обучающихся по направлению 654100 — «Электроника и микроэлектроника», специальность 210106 «Промышленная электроника». Дисциплина «Твердотельная электроника» относится к разделу общепрофессиональных дисциплин.

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Требования государственного образовательного стандарта высшего профессионального образования к структуре и содержанию курса «Твердотельная электроника»

Индекс	Наименование дисциплин и их основные разделы	Всего часов
ОПД. Ф. 08	Твердотельная электроника:	120
	явления переноса в твердых телах, контактные явления в полупроводниках, контакт металл-полупроводник и металл-диэлектрик -полупроводник (МДП); электронно-дырочный переход; изотипные и анизотипные гетеропереходы; полупроводниковые диоды, биполярные транзисторы, тиристоры, МДП-транзисторы, полевые транзисторы с управляющим переходом, полупроводниковые излучатели и фотоприемники, полупроводниковые датчики, сенсорные устройства и преобразователи - принципы действия и характеристики.	

1.2 Предмет, цели, задачи и принципы построения курса «Твердотельная электроника»

Предметом изучения курса «Твердотельная электроника» являются принципы работы и характеристики основных полупроводниковых приборов; методы их использования на практике; умение анализировать назначение и работу полупроводниковых приборов в современных электронных устройствах и применять приборы твердотельной электроники в проектируемых электронных устройствах.

Цели дисциплины.

Целью дисциплины «Твердотельная электроника» является изучение физики полупроводников и принципов работы полупроводниковых приборов таких как полупроводниковые диоды, полевые и биполярные транзисторы, тиристоры и другие.

Особое внимание уделяется рассмотрению зонной теории твердого тела и процессам в электронно-дырочном переходе и контакте металл-полупроводник; рассматриваются оптоэлектронные, гальваномагнитные и термоэлектронные явления в полупроводниках, а также полупроводниковые приборы, принцип работы которых основан на этих эффектах. Кроме того, приводятся сведения о технологии производства полупроводниковых приборов.

Задачи дисциплины.

В результате изучения дисциплины студент должен:

- 1) иметь представление (понимать и уметь объяснить) о путях развития и проблемах полупроводниковой электроники;
- 2) знать принцип действия, свойства, основные характеристики и параметры различных полупроводниковых приборов;
- 3) уметь проводить исследования физических процессов в полупроводниковых приборах;
- 4) иметь навыки (опыт) измерения параметров и характеристик полупроводниковых приборов;
- 5) знать основы технологии их производства полупроводниковых приборов.

Принципы построения курса – последовательное рассмотрение сначала физики полупроводников и основных свойств полупроводниковых переходов, а затем конкретных классов приборов, использующих для своей работы то или иное физическое свойство полупроводника или определенного перехода.

1.3. Роль и место курса «Твердотельная электроника» в структуре реализуемой образовательной программы

Роль курса. Курс закладывает основы для дальнейшей схемотехнической подготовки инженеров промышленной электроники и базируется на дисциплинах: «Материалы и элементы электронной техники», «Теоретические основы электротехники», «Физика», «Химия».

Место курса «Твердотельная электроника» в реализуемой образовательной программе специальности 210106 характеризует структурная схема, представленная на рисунке 1.

Рисунок 1 – Структурная схема дисциплин специальности

1.4. Объемы учебной работы и предусмотренные рабочими учебными планами реализуемой образовательной программы, формы аттестации ее результатов

Характеристика учебной работы и трудоемкость изучения дисциплины, выраженные в объемах, как в целом, так и в разрезе различных видов учебной деятельности студента, предусмотренные рабочим учебным планом, представлены в таблице 1.

Таблица 1 — Характеристика трудоемкости курса «Твердотельная электроника»

		Объем (в сем	Объемы учебной ра-				
Виды учебной работы	Семестр	Ауди- торные	Само- стоятель- ная рабо- та	Всего	боты в кре- дитах «за- четных еди- ницах»		
1	2	3	4	5	6		
1. Предусмотренный ра- бочим учебным планом объем изучения курса в учебных семестрах:							
- всего,		51/3	69/4	120	3,5		
- в т.ч. по семестрам	5	51/3	69/4	120	3,5		
2. По видам аудиторных занятий: -лекции -лабораторные занятия	5 5	34/2 17/1		34 17	1 0,5		
3. Аттестация по курсу: -экзамены	5			36	1		
4. Итого объем курса по семестрам (записи в зачетную книжку): -экзамены	5			120	3,5		
5. Итого трудоемкость курса (дисциплины)				156	4,5		

2 СТРУКТУРА КУРСА «ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА»

Структура курса «Твердотельная электроника» представлена на рисунке 2.

Рисунок 2 – Структура курса «Твердотельная электроника»

3 КАЛЕНДАРНЫЙ ГРАФИК ИЗУЧЕНИЯ КУРСА «ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА»

3.1 Лекции

Лекции по курсу «Твердотельная электроника» предусматривают рассмотрение теоретических и проблемных вопросов в концентрированной, логически представленной форме, а также состояния и перспектив практического использования приборов твердотельной электроники.

График лекционного курса «Твердотельная электроника» представлен в таблице 2.

Таблица 2 – Программа лекций курса «Твердотельная электроника»

1 40	лица 2 – программа лекции курса «твердотельная электроника					
No	T	Количество				
п/п	Тематика лекций	академиче-				
		ских часов				
1	2	3				
	ВВЕДЕНИЕ					
	Предмет дисциплины и ее задачи. Структура, содержание дис-					
	циплины; ее связь с другими дисциплинами учебного плана. Перечень					
1	дисциплин и разделов, усвоение которых необходимо студентам для	2				
	изучения данной дисциплины.					
	Роль электронных приборов в современной электронике. Основы					
	классификации электронных приборов.					
	СВОЙСТВА ПОЛУПРОВОДНИКОВ					
	Классификация и энергетические диаграммы твердых тел. Ва-					
2	лентная зона и зона проводимости. Зонная структура металла, диэлек-	2				
	трика и полупроводника. Генерация и рекомбинация носителей заряда					
	в полупроводниках. Собственные и примесные полупроводники.					
3	Уровень Ферми. Законы распределения носителей заряда в зонах	2				
3	полупроводника. Вырожденные и невырожденные полупроводники.	2				
4	Диффузия и дрейф носителей заряда. Подвижность носителей и	2				
4	коэффициент диффузии, их связь. Полный ток в полупроводнике.	Δ				
	Полупроводники в сильных электрических полях (ударная иони-					
5	зация, туннелирование электронов, рассеяние носителей заряда, меж-	2				
	долинный переход электронов).					
	КОНТАКТНЫЕ ЯВЛЕНИЯ					
	Физические основы образования электронно-дырочного перехо-					
6	да. Анализ перехода в равновесном и в неравновесном состоянии. То-	2				
	ки через р-п-переход. Свойства симметричного и несимметричного					
	р-п-перехода.					
7	Диффузионная и барьерная емкость р-п-перехода. Виды пробоя	2				
/	р-п-перехода. Вольт-амперная характеристика р-п-перехода.	2				
	Контакт полупроводников с одним типом проводимости, но с					
0	разной концентрацией носителей заряда (переходы типа p+-p, n+-n,	n,				
8	р-і, n-і). Выпрямляющие и омические переходы на контакте металла с					
	полупроводником.					
	V 1 11	1				

Продолжение таблицы 2

1	2	3
	ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ	
9	Классификация полупроводниковых диодов. Выпрямительные диоды, их вольтамперная характеристика, технология изготовления, электрические свойства. Стабилитроны.	2
	БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ	
10	Назначение и классификация транзисторов. Принцип работы транзистора и его основные параметры. Основные режимы работы и схемы включения транзистора.	2
11	Статические вольтамперные характеристики транзистора. Пробой транзистора. Работа транзистора на малом переменном сигнале. Малосигнальные параметры.	2
12	Усилительные свойства транзистора в разных схемах включения. Эквивалентные схемы.	2
13	Дрейфовый и бездрейфовый транзисторы. Частотные свойства транзисторов. Нагрузочная характеристика транзистора. Параметры предельного режима работы по температуре.	2
14	УНИПОЛЯРНЫЕ (ПОЛЕВЫЕ) ТРАНЗИСТОРЫ Полевые транзисторы с управляющим p-n-переходом и с пере- ходом Шотки. Статические характеристики, эквивалентные схемы.	2
15	Полевые транзисторы с изолированным затвором (МДП-транзисторы), структура, принцип действия. МДП-транзисторы с индуцированным и встроенным каналом, статические характеристики, виды пробоя.	2
16	ТИРИСТОРЫ Динисторы (диодные тиристоры). Структура и принцип действия, ВАХ. Динистор с зашунтированным эмиттерным переходом. Триодные тиристоры (тринисторы), структура, принцип действия, ВАХ.	2
17	Тиристоры проводящие в обратном направлении. Симметричные тиристоры (симисторы). Способы переключения тиристоров. Динамические свойства. Основные параметры тиристоров.	2
Итого в 5 семестре		
Ито	го по курсу (дисциплине) в целом	34

3.2 Лабораторные занятия

Лабораторные занятия направлены на закрепление и углубление, практическое подтверждение теоретических концепций курса, а также на формирование и развитие умений и навыков планирования и проведения эксперимента. График реализации лабораторного практикума приведен в таблице 3.

Подробные описания лабораторных работ и методические указания по их выполнению приведены в /7/.

Таблица 3 – График лабораторных занятий

№ п/п	Наименования лабораторных работ	Количество академиче- ских часов			
1	2	3			
1	Исследование выпрямительных диодов	2			
2	Исследование стабилитронов	2			
3	Исследование туннельных и обращенных диодов	2			
4	Исследование статических характеристик и физических параметров маломощного транзистора в схеме ОБ	2			
5	Исследование статических характеристик и физических параметров маломощного транзистора в схеме ОЭ	2			
6	Исследование полевого транзистора с управляющим переходом	3			
7	Исследование тиристора	2			
8	Исследование тиристора	2			
Итог	17				
Итог	го по курсу (дисциплине) в целом	17			

3.3 Объем, структура и содержание самостоятельной работы студентов, график ее выполнения

Самостоятельная работа проводится в специализированной лаборатории кафедры, в читальном зале университета.

Виды самостоятельной работы студентов:

- подготовка к лекциям;
- подготовка к лабораторным экспериментам, оформление отчета и подготовка к защите;
- самостоятельное изучение отдельных теоретических разделов курса (таблица 4);
- подготовка к экзамену по курсу.

Таблица 4 – Темы, вынесенные на самостоятельное изучение

№ п/п	Наименования теоретических разделов курса	Количество часов
1.	КОНТАКТНЫЕ ЯВЛЕНИЯ Гетеропереходы. Методы получения p-n-переходов.	2
2.	ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Туннельные диоды. Обращенные диоды.	2
3.	Варикапы.	2
4.	Импульсные, высокочастотные и сверхвысокочастотные диоды.	2
5.	Диоды Шотки.	2
6.	БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ. Работа транзистора на импульсах.	2
7.	УНИПОЛЯРНЫЕ (ПОЛЕВЫЕ) ТРАНЗИСТОРЫ Полупроводниковые приборы с зарядовой связью, свойства и параметры.	2
8.	ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ НА ЭФФЕКТЕ МЕЖДОЛИННОГО ПЕРЕХОДА ЭЛЕКТРОНОВ Физические основы отрицательного дифференциального сопротивления, доменная неустойчивость. Эффект Ганна.	2
9.	Пролетный режим работы генератора Ганна.	2
10.	Генератор Ганна в режиме ограничения накопления объемного заряда.	2
11.	ПОЛУПРОВОДНИКОВЫЕ ТЕРМОЭЛЕКТРИЧЕСКИЕ УСТРОЙСТВА Конструкция и принцип действия термоэлектрических устройств. Возникновение термо-ЭДС (эффект Зеебека). Поглощение и выделение теплоты в спаях термоэлемента (эффект Пельтье).	2
12.	Термоэлектрические генераторы.	2
13.	Холодильники и тепловые насосы.	2
14.	МАГНИТОЭЛЕКТРИЧЕСКИЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ Эффект Холла. Магниторезистивный эффект. Преобразователи Холла.	2
15.	Магниторезисторы. Магнитодиоды и магнитотранзисторы.	2
Bcei	го	30

График выполнения самостоятельной работы приведен в таблице 5.

Таблица 5 – График выполнения самостоятельной работы студентов

	Число часов в неделю										Итого							
Вид самостоятельной ра- боты	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	по ви- дам работы
							5 cen	естр										
Подготовка к лекциям		0,2	0,25	0,2	0,25	0,2	0,25	0,2	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	3,8
Подготовка к лаборатор- ным занятиям	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7		27,2
Оформление отчета		1		1		1		1		1		1		1		1		8
Изучение теоретических разделов курса			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	30
ИТОГО в 5 семестре	1,7	2,9	3,95	4,9	3,95	4,9	3,95	4,9	3,95	4,95	3,95	4,95	3,95	4,95	3,95	4,95	2,25	69
Итого по курсу (дисциплине) в целом	1,7	2,9	3,95	4,9	3,95	4,9	3,95	4,9	3,95	4,95	3,95	4,95	3,95	4,95	3,95	4,95	2,25	69

4 ТЕХНОЛОГИИ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОНТРОЛЯ РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЕМЫХ

4.1 Технологии и методическое обеспечение контроля текущей успеваемости студентов

Для текущего контроля используется периодическая в течение семестра оценка результатов учебной деятельности каждого студента с учетом активности на лабораторных занятиях и графика выполнения самостоятельной работы (см. таблицу 5).

4.2 Технологии и методическое обеспечение аттестации по курсу

Данный курс изучается в течение одного семестра. Рабочим учебным планом предусмотрена аттестация в форме экзамена. Допуск к экзамену разрешается при наличии выполненных и защищенных в срок всех лабораторных работ.

Аттестация по курсу в форме экзамена проводится путем совмещения устной и письменной формы. Каждому студенту на экзамене выдаются два теоретических вопроса. Перечень экзаменационных вопросов приведен в Приложении А.

4.3 Технологии и методическое обеспечение контроля выживаемости знаний, умений и навыков, сформированных при изучении курса

Выживаемость знаний, умений и навыков, приобретенных в результате изучения данного курса, выявляются при проведении итогового междисциплинарного экзамена и при государственной аттестации и аккредитации специальности. Педагогические измерительные материалы (ПИМ) по специальности включают в себя вопросы по курсу «Твердотельная электроника». ПИМы хранятся на кафедре ПЭ.

Ключевые разделы курса «Твердотельная электроника», включенные в ПИМы и необходимые для дальнейшей работы студентов, а также для практической деятельности после окончания вуза:

- полупроводниковые диоды;
- биполярные транзисторы;
- униполярные (полевые) транзисторы;
- тиристоры;
- полупроводниковые приборы на эффекте междолинного перехода электронов;
- терморезисторы и полупроводниковые термоэлектрические устройства;

- полупроводниковые тензометры;
- магнитоэлектрические полупроводниковые приборы.

5 РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ КУРСА «ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА»

5.1 Список основной учебной и учебно-методической литературы

- 1) **Пасынков, В.В**. Полупроводниковые приборы: Учебник для вузов. / В.В. Пасынков, Л.К.Чиркин, СПб: Лань, 2004. 480 с.
- 2) **Батушев, В.А.** Электронные приборы: Учебник для вузов. / В.А. Батушев М.: Высшая школа, 1980. 383 с.
- 3) **Дулин, В.И.** Электронные приборы. / В.И. Дулин М.: Энергия, 1977. 424 с.
- 4) **Викулин, И.М.** Физика полупроводниковых приборов. / И.М. Викулин, В.И. Стафеев М.: Радио и связь, 1990. 264 с.
- 5) **Крутякова, М.Г.** Полупроводниковые приборы и основы их проектирования: Учебник для техникумов / М.Г. Крутякова, Н.А. Чарыков, В.В. Юдин. М.: Радио и связь, 1983. 352 с.
- 6) **Терехов, В.А.** Задачник по электронным приборам. / В.А. Терехов М.: Энергоатомиздат, 1983. 280 с.

5.2 Список дополнительной учебной, учебно-методической и научной литературы

- 7) **Копытов, С.М.** Твердотельная электроника: Методические указания к лабораторным работам / Сост. С.М. Копытов Комсомольск-на-Амуре: ГОУВПО «Комсомольский-на-Амуре гос. техн. ун-т», 2007. 40 с.
- 8) **Копытов, С.М.** Твердотельная электроника: Методическое пособие. / С.М. Копытов (автор-составитель) Комсомольск-на-Амуре: ГОУВПО «Комсомольский-на-Амуре гос. техн. ун-т», 2005. 179 с.
- 9) **Линч, П.** Задачи по физической электронике. / П. Линч, А. Николайдес М.: Мир, 1975. 264 с.
- 10) **Росадо, Л.** Физическая электроника и микроэлектроника. / Л. Росадо М.: Высшая школа, 1991. 351 с.

5.3 Перечень программных продуктов, используемых при изучении курса

Программные продукты, используемые при изучении курса:

- **Ø** программные продукты нормативно-справочного характера, используемые студентами для теоретической подготовки стандарты в сети Internet;
- **Ø** стандартные программы, используемые студентами для подготовки отчетов к лабораторным работам WINWORD, MathCAD;
- **Ø** программа моделирования работы электронных приборов и электронных схем EWB.

5.4 Материально-технические ресурсы

Материально-техническое обеспечение дисциплины:

Ø лабораторные стенды 87Л-1 в лаборатории основ электроники кафедры «Промышленная электроника».

ПРИЛОЖЕНИЕ А

Экзаменационные вопросы

- 1. Генерация и рекомбинация носителей в полупроводниках. Собственные и примесные полупроводники. Уровень Ферми. Зависимость концентраций носителей от температуры. Связь концентраций основных и неосновных носителей.
- 2. Диффузия и дрейф носителей. Подвижность, коэффициент диффузии, время жизни, диффузионная длина, длина свободного пробега, зависимость от температуры.
- 3. Полупроводники в сильных электрических полях. Ударная ионизация, туннелирование, рассеяние носителей, междолинный переход электронов.
- 4. *Р-п*-переход в равновесном состоянии. Энергетическая диаграмма, ширина и высота потенциального барьера, их зависимость от температуры, концентрации примесей, ширины запрещенной зоны.
- 5. *Р-п*-переход в неравновесном состоянии. Энергетическая диаграмма, ширина и высота потенциального барьера, их зависимость от температуры, напряжения.
- 6. Ёмкости *p-n*-перехода, их влияние на работу диодов и транзисторов. Вольт фарадная характеристика *p-n*-перехода.
 - 7. Виды пробоев p-n-перехода. Зависимость напряжения пробоя от температуры.
- 8. ВАХ идеального p-n-перехода. Влияние температуры, ширины запрещенной зоны, концентрации легирующих примесей.
 - 9. ВАХ реального диода, отличие от ВАХ идеального p-n-перехода.
- 10. Контакт полупроводников с одним типом проводимости. Энергетическая диаграмма, свойства, применение.
- 11. Выпрямляющие и омические переходы на контакте металла с полупроводником, применение.
 - 12. Выпрямительные диоды. ВАХ, применение.
 - 13. Стабилитроны, стабисторы. ВАХ, применение.
 - 14. Туннельный диод. Принцип работы, ВАХ, применение.
 - 15. Обращенный диод. Принцип работы, ВАХ, применение.
- 16. Варикапы. Вольт-фарадная характеристика, эквивалентные схемы на низких и высоких частотах.
- 17. Импульсные и высокочастотные диоды. Временные диаграммы токов, время восстановления обратного сопротивления, методы его уменьшения.
 - 18. Диоды Шоттки. Преимущества по сравнению с диодами на р-п-переходах.
- 19. Биполярный транзистор. Структура, энергетические диаграммы, токи в электродах.
 - 20. Схема с ОБ. Основные параметры, ВАХ.
 - 21. Схема с ОЭ. Основные параметры, ВАХ.
- 22. Виды пробоя в транзисторах. Зависимость напряжения лавинного пробоя от схемы включения, параметров внешних цепей.
- 23. Усилительные свойства транзистора в разных схемах включения. Коэффициенты усиления (K_I, K_I), входные и выходные сопротивления.
- 24. Частотные свойства транзисторов в разных схемах включения, сравнение. Дрейфовые и бездрейфовые транзисторы.
 - 25. Работа транзистора на импульсах (ключевой режим работы транзисторов).
 - 26. Предельные режимы работы транзистора по температуре и частоте.
- 27. Полевые транзисторы с управляющим p-n-переходом. ВАХ, частотные свойства, применение.
- 28. МДП-транзисторы с индуцированным каналом. Структура, ВАХ, частотные свойства, применение.

- 29. МДП-транзисторы со встроенным каналом. Структура, ВАХ, частотные свойства, применение.
 - 30. Динисторы. Структура, ВАХ, применение.
 - 31. Тринисторы. Структура, ВАХ, применение.
- 32. Симметричные тиристоры, шунтирование эмиттерных переходов. Структура, ВАХ, применение.
 - 33. Способы включения и выключения тиристоров.
 - 34. Эффект Зеебека, эффект Пельтье. Термоэлемент.
- 35. Термоэлектрические генераторы. Полупроводниковые холодильники и тепловые насосы.
 - 36. Датчики Холла.
 - 37. Магниторезисторы.
 - 38. Магнитодиоды и магнитотранзисторы.