Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УРВЕРЖДАЮ
Г.П. Старинов
2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Общая энергетика `

Направление подготовки	13.03.02 Электроэнергетика и электротехника
Направленность (профиль) образовательной программы	Электроснабжение
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2019
Форма обучения	заочная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.	
5	9	4	

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	ЭМ

Разработчик рабочей программы Доцент, канд. техн. наук, доцент	В.А. Размыслов. « <u>22</u> » <u>04</u> 20 /9г.
СОГЛАСОВАНО	
Директор библиотеки	<u>И</u> .А. Романовская « <u>22</u> » <u>04</u> 20/9г.
Заведующий обеспечивающей кафедрой «Электромеханика»	## A.B. Сериков «22» 04 20/9г.
Заведующий выпускающей кафедрой «Электромеханика»	<u>Ариме</u> А.В. Сериков «22» 04 20/9г.
Декан электротехнического факультета	
Начальник учебно-методического управления	<u>— </u> Е.Е. Поздеева « <u>26</u> » <u>— 04</u> 20/9г.

1 Общие положения

Рабочая программа дисциплины «Общая энергетика» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 144 от 28.02.2018, и основной профессиональной образовательной программы подготовки бакалавров по направлению 13.03.02 "Электроэнергетика и электротехника".

Практическая подготовка реализуется на основе профессионального стандарта 20.032 «Работник по обслуживанию оборудования подстанций электрических сетей». Обобщённая трудовая функция: 1.Инженерно-техническое сопровождение деятельности по техническому обслуживанию и ремонту оборудования подстанций.

Задачи	Изучение первичных источников энергии на Земле, использования их на
дисциплины	современном этапе и возможности использования в будущем; изучение
	технологических схем и оборудования основных типов электростанций;
	освоение знаний о процессах и средствах передачи и распределения
	электроэнергии; формирование понимания социальных и экологических
	проблем энергетики.
Основные	Современное состояние энергетики.
разделы / темы	Первичные энергоресурсы и вторичные виды энергии.
дисциплины	Производство электроэнергии.
	Потребление электроэнергии.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Общая энергетика» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код по ФГОС	Индикаторы достижения	Планируемые результаты	
		обучения по дисциплине	
	Профессиональные		
ОПК-5. Способность прово-	ОПК-5.1. Знает методы и спо-	Знать единицы измерения	
дить измерения электриче-	собы измерения электрических	энергии, мощности, элек-	
ских и неэлектрических ве-	и неэлектрических величин	трического тока, напряже-	
личин применительно к		ния, которые применяются	
объектам профессиональ-		в энергетике и электроэнер-	
1 1		гетике; знать методы и спо-	
ной деятельности		собы их измерения	
	ОПК-5.2. Умеет выбирать	Уметь выбирать приборы и	
	средства измерения электриче-	проводить измерения элек-	
	ских и неэлектрических вели-	трических и неэлектриче-	
	чин	ских величин	
	ОПК-5.3. Владеет навыками	Владеть навыками состав-	
	обработки и оценки погрешно-	ления и сборки схем и из-	
	сти результатов измерений	мерений; навыками обра-	
	1 3	ботки результатов измере-	
		ний	

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Общая энергетика» изучается на 5 курсе в 9 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

— Для освоения дисциплины необходимы знания, умения, навыки и опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Метрология и технические измерения», «Производственная практика (технологическая практика), 3 курс», «Измерение, испытание и монтаж электрооборудования»

Дисциплина «Общая энергетика» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем выполнения лабораторных работ. Дисциплина «Общая энергетика» в рамках воспитательной работы ориентирована на формирование у обучающихся умение аргументировать свою точку зрения, творчески подходить к решению технических задач. Входной контроль при изучении дисциплины не проводится.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 з.е., 144 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академи- ческих часов
Общая трудоемкость дисциплины	144
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	14
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, преду- сматривающие преимущественную передачу учебной информации пе- дагогическими работниками)	6
занятия семинарского типа (семинары, практические занятия, прак-	
тикумы, лабораторные работы, коллоквиумы и иные аналогичные за-	8
нятия), в том числе в форме практической подготовки	2
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации);	
взаимодействие в электронной информационно-образовательной среде вуза	126
Промежуточная аттестация обучающихся — Зачет с оценкой	4

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

, 31 <i>1</i> 1)		
Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)		
1	Контактная работа преподавателя с обучающимися	
Лекции	Лаборатор- ные занятия	CPC
0,25		3
0,25		2
0,5		11
0,25		2
0,25		2
0,5		4
0,5		4
1		18
0,5		20
0,5	3	15
0,5	3	15
0,5	2*	15
0,5		15
6	8	126
	самостоятел чающихся и то контактная радавателя с обу Лекции 0,25 0,25 0,25 0,5 0,5 1 0,5 0,5 0,5 0,5 0,5	самостоятельную работу чающихся и трудоемкость сах) Контактная работа преподавателя с обучающимися Лекции Лабораторные занятия 0,25 0,25 0,25 0,5 1 0,5 1 0,5 0,5 3 0,5 3 0,5 2* 0,5

^{*}Реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	90
Подготовка к лабораторным работам	16
Подготовка и оформление расчетно-графической работы	20
Bcero	126

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 5 – Паспорт фонда оценочных средств

Контролируемые разделы (темы)	Формируемая компетенция	Наименование оценочного	Показатели оценки	
дисциплины		средства		
Разделы 1 - 4	ОПК-5	Тест	Правильность выполнения	
			задания	
Раздел 4	ОПК-5	Лабораторные работы	Аргументированность отве-	
			TOB	
Раздел 4	ОПК-5	Расчетно-графическая	Полнота и правильность вы-	
		работа	полнения задания.	

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 6).

Таблица 6 – Технологическая карта

	Наименование оценочного средства	Сроки выпол- нения	Шкала оценивания	Критерии оценивания
			9 сем	естр
	Пром	ежуточна	я аттестаці	ия в форме зачета с оценкой
1 2 3 4 5	Лабораторная работа 1 Лабораторная работа 2 Лабораторная работа 3 Лабораторная работа 4 РГР	в течение сессии	14 баллов 14 баллов 14 баллов 14 баллов 14 баллов	14 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 11 баллов — студент показал хорошие навыки применения полученных знаний и умений. 8 баллов — студент показал удовлетворительные навыки применения полученных знаний и уменых знаний и умений. 0 баллов — студент продемонстрировал недостаточный уровень владения уме-
6	Тест	в течение	30 баллов	ниями и навыками. <i>30 баллов</i> — 85-100 % правильных отве-

	Наименование оценочного средства	Сроки выпол- нения	Шкала оценивания	Критерии оценивания
		сессии		TOB;
				<i>25 баллов</i> – 75-84 % правильных ответов;
				<i>20 баллов</i> – 65-74 % правильных ответов;
				0 баллов -0-64 % правильных ответов.
И	ТОГО:	-	100 баллов	-

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

Задания для текущего контроля

ТЕСТЫ

Первый уровень

- 1. Какая из этих единиц используется для измерения мощности:
- а) калория, б) киловатт час, в) тонна условного топлива, г) лошадиная сила?
- 2. Какой из этих первичных источников энергии используется и для получения энергии, и для получения материалов:
- а) атомная энергия, б) термоядерная энергия, в) геотермальная энергия, г) природный газ?
 - 3. Какой из этих первичных источников энергии возобновляемый:
- а) каменный уголь, б) нефть, в) природный газ, г) гидроэнергия?
- 4. Какая из этих электростанций загрязняет окружающую среду вредными выбросами:
- а) тепловая, б) солнечная, в) гидравлическая, г) ветровая?
- 5. Какой из этих первичных источников удовлетворяет большую часть потребности человечества в энергии в настоящее время:
- а) гидроэнергия, б) атомная энергия, в) солнечная энергия,
- г) ископаемое углеводородное топливо?
 - 6. Какой из этих первичных источников не подлежит транспортировке:
- а) атомная энергия, б) гидроэнергия, в) биоэнергия, г) природный газ?
 - 7. Что перевозят на танкерах:
- а) уголь, б) нефть, в) природный газ, г) урановую руду?
- 8. Если при коротком замыкании в одной квартире защита отключает напряжение во всех квартирах многоэтажного дома, то это означает, что она не удовлетворяет требованию:
- а) чувствительности, б) ремонтопригодности, в) экономичности, г) селективности.
 - 9. Какая из этих ламп обладает большей светоотдачей:
- а) лампа накаливания, б) ртутная газоразрядная лампа,
- в) люминесцентная лампа, г) светодиодная лампа?
 - 10. Какая форма напряжения в системах электроснабжения общего назначения:
- а) прямоугольная, б) треугольная, в) трапецеидальная, г) синусоидальная?
 - 11. Какой из этих каналов передачи электроэнергии дороже:
- а) электропроводка изолированными проводами, б) кабельная траншея,
- в) кабельный канал, г) кабельный туннель?
 - 12. Что передается по кабельным линиям:

- а) нефть, б) газ, в) сжатый воздух, г) электроэнергия?
 - 13.В системах переменного тока действующее значение напряжения:
- а) равно амплитуде напряжения, б) в $\sqrt{2}$ раз больше амплитуды,
- в) в $\sqrt{2}$ раз меньше амплитуды, г) в $\sqrt{3}$ раз меньше амплитуды.
- 14. Устройство, преобразующее электрическую энергию в другие виды энергии -
- а) электрогенератор, б) трансформатор, в) выключатель, г) электроприемник.
 - 15. Что из перечисленного ниже является силовым электроприемником:
- а) электродвигатель, б) трансформатор, в) компьютер, г) электролампа?
 - 16. Какой ток используют в современной электроэнергетике:
- а) однофазный, б) двухфазный, в) трехфазный, г) четырехфазный?
 - 17. Что из перечисленного используется для передачи электроэнергии:
- а) воздуховод, б) воздушная линия, в) воздушный транспорт, г) газопровод?
- 18. Как называется электрическая мощность, потребляемая приемником и преобразуемая в нем в другие виды мощности:
- а) полная, б) активная, в) реактивная, г) мнимая?
 - 19. Какая частота напряжения в России называется промышленной:
- б) 50 Гц, в) 100 Гц, г) 500 Гц? а) 10 Гц,
 - 20. Что из перечисленного не используется внутри помещений:
- а) электропроводка изолированными проводами, б) шинопроводы,
- в) кабельные линии, г) воздушные линии?

Второй уровень

- 1. На каком напряжении цеховая подстанция может получать электроэнергию:
- а) 10 кВ, б) 35 кВ, в) 110 кВ, г) 220 кВ?
- 2. Какие из существующих в мире электростанций производят больше всего электроэнергии:
- а) тепловые, б) гидравлические, в) атомные, г) солнечные?
 - 3. Какая из этих электростанций производит не только электрическую энергию:
- а) КЭС, б) АЭС, в) ГЭС, г) ТЭЦ?
 - 4.Для защиты сетей напряжением 380 В могут применятся:
- а) рубильники, б) разъединители,
- в) штепсельные соединения, г) плавкие предохранители.
 - 5. Для ограничения токов короткого замыкания могут применяться:
- а) разрядники, б) короткозамыкатели, в) разъединители, г) реакторы.
- 6. На каком напряжении главная понизительная подстанция может получать электроэнергию:
- а) 0,38 кВ, б) 6 кВ, в) 10 кВ, г) 110 кВ?
 - 7.В какой сети однофазное замыкание на землю является коротким замыканием:
- а) с изолированной нейтралью,
- б) с компенсированной нейтралью,
- в) с глухозаземленной нейтралью?
 - 8. Что не выполняется на электрической подстанции:
- а) производство электроэнергии, б) прием электроэнергии,
- в) преобразование электроэнергии, г) распределение электроэнергии?
 - 9. Как классифицируются электроприемники по надежности электроснабжения:
- а) на классы, б) на группы, в) на разряды, г) на категории?
 - 10. Что не входит в число электрических нагрузок:
- а) напряжение, б) ток, в) активная мощность, г) реактивная мощность?
- 11. Когда наблюдается максимум на суточном графике электрической нагрузки жилого микрорайона:
- а) утром, б) днем, в) вечером, г) ночью?
- 12. Совокупность электрических подстанций и линий электропередачи называется:
- а) энергосистема, б) электроэнергетическая система,

- в) электрическая сеть, г) электростанция.
 - 13. Что является границей низкого и высокого напряжений:
- а) 100 В, б) 1 кВ, в) 10 кВ, г) 100 кВ?
 - 14. Что называется в электроэнергетике коэффициентом мощности:
- a) $\cos\varphi$, δ) $\sin\varphi$, ϵ) $tg\varphi$, ϵ) $ln\varphi$?
- 15. Какое из соотношений между активной P, реактивной Q и полной S мощностями правильное:
- a) S = P + Q, $(6) S^2 = P^2 + Q^2$, (8) S = P*Q, $(7) S^2 = P^2 Q^2$?
- 16. Какое из этих номинальных напряжений не используют в распределительных сетях предприятий:
- а) 380 В, б) 6 кВ, в) 10кВ, г) 110 кВ?
 - 17. Какое буквенное обозначение используют для защитного заземления:
- a) L, б) N, в) W, г) PE?
- 18. Какое электрическое устройство в схемах электрических сетей обозначают следующим образом:


- а) источник питания, б) электродвигатель,
- в) реактор,
- г) трансформатор?
- 19.Сколько путей передачи электрической энергии существует в разомкнутой электрической сети:
- а) 1, б) 2, в) 3, г) 4?
 - 20. Какой из этих аппаратов не используют в высоковольтной электрической сети:
- а) плавкий предохранитель, б) автоматический выключатель,
- в) разрядник, г) разъединитель?

Третий уровень

- 1. На трансформаторной подстанции происходит преобразование:
- а) частоты, б) напряжения, в) переменного тока в постоянный,
- г) тепловой энергии в электрическую.
 - 2. Какая из этих электростанций обладает наибольшей маневренностью:
- а) КЭС, б) ТЭЦ, в) АЭС, г) ГЭС?
 - 3. Каков примерно КПД конденсационной электростанции:
- a) 10%, δ) 40%, B) 70%, Γ) 90%?
 - 4. Каков примерно КПД теплофикационной электростанции:
- a) 10%, δ) 40%, B) 70%, Γ) 90%?
 - 5. Каков примерно КПД гидравлической электростанции:
- а) 10%, б) 40%, в) 80%, г) 95%?
- 6. Сколько независимых источников питания необходимо для питания особой группы электроприемников 1 категории:
- а) 1, б) не менее 2-х, в) не менее 3-х, Γ) не менее 4-х?
- 7. Номинальное напряжение электрической сети равно 380 В. Отклонение напряжения равно +5%. Каково напряжение в сети:
- а) 340 B, б) 360 B, в) 380 B, г) 400 B?
 - 8. Как называется величина, определяемая по следующей формуле

$$\delta U = 100 \cdot (U - U_{\text{HOM}}) / U_{\text{HOM}},$$

- а) колебания напряжения, б) отклонение напряжения,
- в) потери напряжения, г) падение напряжения?
 - 9. Что принимают в качестве расчетной электрической нагрузки:
- а) среднегодовую нагрузку, б) минимальную среднюю получасовую нагрузку,
- в) максимальную среднюю получасовую нагрузку,
- г) среднеквадратичную суточную нагрузку?
 - 10. Какой график нагрузки представлен ниже

- а) годовой упорядоченный,
- б) годовой хронологический,
- в) суточный упорядоченный,
- г) суточный хронологический?

11. Как влияет на график нагрузки увеличение числа рабочих смен на предприятии:

- а) увеличивает неравномерность графика, б) уменьшает неравномерность графика,
- в) не влияет на форму графика?
 - 12.Передача реактивной мощности:
- а) уменьшает потери напряжения,
- б) уменьшает потери электроэнергии,
- в) увеличивает напряжение на приемниках, г) увеличивает потери электроэнергии?
 - 13. Какая из этих электростанций аккумулирует энергию:
- а) ТЭЦ, б) АЭС, в) ГЭС, г) ГАЭС?
- 14. Какое электрическое устройство может использоваться в качестве источника реактивной мощности:
- а) резистор, б) конденсатор, в) индуктивная катушка, г) электрохимический аккумулятор?
 - 15. Какие цвета используются для цветового обозначения фаз А-В-С:
- а) синий-желтый-красный,
- б) черный-голубой-зеленый,
- в) красный-желтый-голубой,
- г) желтый-зеленый-красный?
- 16. Каково напряжение двух неповрежденных фаз относительно земли при замыкании третьей фазы на землю в сетях с изолированной нейтралью:
- а) равно 0, б) равно фазному, в) в 2 раза больше фазного, г) равно линейному?

17. Какое устройство иногда может и не быть на трансформаторной подстанции:

- в) трансформатор
- б) распределительное устройство низшего напряжения,
- в) заземляющее устройство, г) распределительное устройство высшего напряжения?
- 18. Что из перечисленного ниже может быть использовано в качестве естественного заземлителя:
- а) стальная арматура железобетонных фундаментов зданий,
- б) проложенные в земле стальные трубы газопроводов,
- в) алюминиевые оболочки проложенных в земле кабелей,
- г) металлическая крыша зданий?
- 19. Какая из этих трехфазных электрических сетей в России выполняются с глухозаземленной нейтралью:
- а) с $U_{\text{ном}} = 110 \text{ кB}$, б) с $U_{\text{ном}} = 35 \text{ кB}$, в) с $U_{\text{ном}} = 10 \text{ кB}$, г) с $U_{\text{ном}} = 6 \text{ кB}$?

20.Для чего предназначены автоматические выключатели:

- а) для защиты от импульсных напряжений,
- б) только для коммутации электрических цепей,
- в) только для защиты электроустановок,
- г) для защиты и коммутации электрических цепей и установок?

ВОПРОСЫ К ЗАЩИТЕ ЛАБОРАТОРНЫХ РАБОТ

Лабораторная работа 1. Измерение переменного напряжения, тока и мощности в системах электроснабжения.

- •В каких случаях и в каких точках систем электроснабжения предусматриваются измерения напряжения, тока и активной мощности, и какие приборы для этого используются?
- Объясните понятия активная, реактивная и полная мощности; полный ток, активная и реактивная составляющие тока?
- •Объясните характер зависимости тока и коэффициента мощности от реактивной нагрузки?
- Для чего предназначены измерительные трансформаторы?
- Что понимают под коэффициентом трансформации трансформатора тока и трансформатора напряжения?
- Как определить потребляемую мощность по показанию ваттметра при измерениях в сети высокого напряжения?

Лабораторная работа 2. Моделирование установившихся режимов работы систем электроснабжения.

- Виды линий электропередач.
- Что называют электрической сетью?
- Характерные особенности переменного тока и переменного напряжения.
- Понятие активной, реактивной и полной мощности, треугольник мощностей.

Лабораторная работа 3. Влияние компенсации реактивной мощности на работу систем электроснабжения.

- Коэффициент мощности и коэффициент реактивной мощности.
- Что такое компенсация реактивной мощности?
- Три основные причины, диктующие необходимость компенсации реактивной мощности.
- Виды компенсирующих устройств.

Лабораторная работа 4. Встречное регулирование напряжения

- •Почему возникает необходимость регулировать напряжение в системах электроснабжения?
- В чем суть встречного регулирования?
- Как изменяют коэффициент трансформации трансформатора?
- Чем отличаются трансформаторы ПБВ и РПН?

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

Определение расчетной электрической нагрузки жилого микрорайона. Выбор трансформаторов главной понизительной подстанции

- 1) Определить расчетную электрическую нагрузку жилого микрорайона методом удельных нагрузок.
- 2) Выбрать трансформаторы главной понизительной подстанции (ГПП) микрорайона.

Исходные данные для выполнения РГР приведены в таблице 7.

На этапе проектирования электрическая нагрузка микрорайона с учетом нагрузок общественных зданий микрорайонного значения на шинах 0,4 кВ внутриквартальных трансформаторных подстанций (ТП) ориентировочно может

быть определена по следующей формуле

$$\begin{split} P_{\text{мрм}} &= \left(P_{\text{ж,уд}} + P_{\text{общ,уд}}\right) F * 10^{-3}, \\ Q_{\text{мрм}} &= P_{\text{мрм}} * tg \varphi, \end{split}$$

где $P_{\text{мрм}}$ – активная расчетная нагрузка на шинах 0,4 кВ ТП, кВт; $P_{\text{ж,уд}}$ – удельная активная нагрузка на 1 м² общей площади квартир, Вт/м²;

 $P_{\text{общ.уд}}$ - удельная активная нагрузка общественных зданий микрорайонного значения, отнесенная к общей площади жилых домов, которую можно принимать при застройке домами с электрическими плитами 2,6 BT/м², а для домов с газовыми плитами 2,3 BT/м²; F – общая площадь жилых домов, подключенных к шинам 0,4 кВ ТП, м²;

 $Q_{\text{мрм}}$ - реактивная расчетная нагрузка на шинах 0,4 кВ ТП, квар;

tgo – коэффициент реактивной мощности жилых зданий данного типа.

К зданиям микрорайонного значения относятся предприятия торговли и общественного питания, школы, детские дошкольные учреждения. приемные и ремонтные пункты и другие учреждения согласно строительным нормам по планировке и застройке городов, поселков и сельских населенных пунктов.

Таблица 7 - Исходные данные к выполнению РГР

Номер	Общая площадь жи-	Вид ку-	Кинотеатр с	Поликлиника	Колледж
вари-	лых домов микро-	хонной	числом по-	с числом по-	с числом
анта	района, м ² /этажность	плиты	садочных	сещений в	учащихся
	застройки		мест	смену	
1	300 000/3	Газовая	1300	850	-
2	1000 000/16	Электрич.	1200	1000	-
3	500 000/5	Газовая	1300	850	-
4	500 000/12	Электрич.	-	750	900
5	600 000/5	Газовая	-	750	900
6	950 000/16	Электрич.	-	750	900
7	650 000/5	Газовая	900	-	800
8	650 000/9	Электрич.	900	-	800
9	700 000/5	Газовая	900	-	800
10	700 000/12	Электрич.	1000	800	-
11	750 000/5	Газовая	1000	800	-
12	750 000/16	Электрич.	1000	800	-
13	800 000/5	Газовая	-	900	950
14	800 000/9	Электрич.	-	900	950
15	850 000/5	Газовая	-	900	950
16	850 000/12	Электрич.	1100	-	850
17	900 000/5	Газовая	1100	-	850
18	900 000/16	Электрич.	1100	-	850
19	600 000/16	Электрич.	1200	1000	-
20	400 000/3	Газовая	1300	850	

Нагрузки общественных зданий районного и городского значения, включая лечебные учреждения и зрелищные предприятия, приведенные к шинам 0,4 кВ ТП можно определить по средним удельным нагрузкам по формуле

$$\begin{split} P_{\text{мрг}i} &= K_i P_{\text{уд}i} n_i, \\ Q_{\text{мрг}i} &= P_{\text{мрг}i} * tg \varphi_i, \\ i &= 1, 2, ..., \end{split}$$

где $P_{\text{мрг}i}$ – активная расчетная нагрузка і-го общественного здания, кВт;

 $P_{yдi}$ — удельная активная нагрузка і-го общественного здания в кВт на одну учетную единицу;

 n_i - количество учетных единиц для i-го общественного здания (число мест, число посещений, число учащихся и т.д.);

 K_i – коэффициент участия і-го общественного здания в максимуме нагрузки жилых домов;

 $Q_{\text{мрг}i}$ – реактивная расчетная нагрузка і-го общественного здания, квар $\operatorname{tg}_{\phi_i}$ - коэффициент реактивной мощности і-го общественного здания.

Суммарные расчетные нагрузки микрорайона

$$\begin{split} P_{\mathrm{Mp}} &= P_{\mathrm{MpM}} \, + P_{\mathrm{Mpr1}} \, + P_{\mathrm{Mpr2}} \, + \cdots, \\ Q_{\mathrm{Mp}} &= Q_{\mathrm{MpM}} \, + Q_{\mathrm{Mpr1}} \, + Q_{\mathrm{Mpr2}} \, + \cdots, \end{split}$$

где $P_{\rm Mp}$ - суммарная расчетная активная нагрузка микрорайона, кВт; $Q_{\rm Mp}$ - суммарная расчетная реактивная нагрузка микрорайона, квар.

Расчетные нагрузки на шинах 10 кВ ГПП микрорайона

$$\begin{split} P_{\Gamma\Pi\Pi} &= 1,02 * P_{\text{Mp}}, \\ Q_{\Gamma\Pi\Pi} &= 1,05 * Q_{\text{Mp}}, \\ S_{\Gamma\Pi\Pi} &= \sqrt{(P_{\Gamma\Pi\Pi}^2 + Q_{\Gamma\Pi\Pi}^2)}, \end{split}$$

где $P_{\Gamma\Pi\Pi}$ – расчетная активная мощность, кВт;

 $Q_{\Gamma\Pi\Pi}$ - расчетная реактивная мощность, квар;

 $S_{\Gamma\Pi\Pi}$ – расчетная полная мощность, кВА.

Коэффициенты 1,02 и 1.05 в приведенных выше формулах учитывают потери активной и реактивной мощностей в трансформаторах 10/0,4 кВ ТП.

Необходимые данные для выполнения расчетов приведены в таблице 8.

Коэффициент реактивной мощности tgф для любой нагрузки определяется через ее коэффициент мощности соsф по формуле

$$tg\varphi = \frac{\sqrt{(1-\cos^2\varphi)}}{\cos\varphi}.$$

Таблица 8 - Характеристика электрических нагрузок микрорайонов

Вид нагрузки	Удельная расчетная нагрузка	Коэффи-	Коэффициент
	на шинах 0,4 кВ трансфор-	циент	участия в
	маторной подстанции	мощности	максимуме
		cosφ	нагрузки
Жилые дома с электриче-	$21,1 \text{ BT/m}^2$	0,96	-
скими плитами при этаж-			
ности застройки 9 этажей			
Жилые дома с электриче-	22, BT/M^2	0.96	-
скими плитами при этаж-			
ности застройки 12 этажей			
Жилые дома с электриче-	23 BT/m^2	0,95	-
скими плитами при этаж-			
ности застройки 16 этажей			
Жилые дома с газовыми	$9,3 \text{ BT/m}^2$	0,96	-
плитами при этажности за-			
стройки 35 этажей			
Кинотеатры	0,12 кВт/место	0,85	0,9
Поликлиники	0,15 кВт/посещений в смену	0,9	0,5
Колледжи	0,4 кВт/ 1 учащегося	0,85	0,5

При наличии на данной территории среди прочих и электроприемников первой категории, которые должны питаться не менее чем от двух независимых источников на питающей подстанции устанавливаются два взаимно резервируемых трансформатора, с

автоматическим включением резерва. При выходе из строя одного из трансформаторов нагрузка всей подстанции подключается к оставшемуся в работе трансформатору. Этот трансформатор может перегружаться до 40% в течение 5 суток. Поэтому номинальную мощность одного трансформатора выбирают равной не половине расчетной мощности всей подстанции, а завышенной на 40% по формуле

$$S_{\text{HOM}} \geq 0.7 * S_{\Gamma\Pi\Pi}$$
.

По рассчитанному значению $S_{\text{ном}}$ выбирают серийный трансформатор из таблицы 9.

Таблица 9 - Трехфазные двухобмоточные трансформаторы 110 кВ

Тип трансформатора	Номинальная мощность S _{ном} , MB*A
TMH-2500/110/11	2,5
TMH-6300/110/11	6,3
ТДН-10000/110/11	10
ТРДН-25000/110/11	25
ТРДН-40000/110/10,5	40
ТРДЦН-63000/110/10,5	63
ТРДЦН-80000/110/10,5	80
ТРДЦН-125000/110/10,5	125

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Общая энергетика [Электронный ресурс]: учебное пособие / В.М.Пискунов, О.В.Шелудько. М.: ИЦ РИОР, НИЦ ИНФРА-М, 2016. 134 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php?, ограниченный. Загл. с экрана. (Дата обращения апрель 2021)
- 2) Князевский, Б.А. Электроснабжение промышленных предприятий / Б.А. Князевский, Б.Ю. Липкин.- М.: Высш. шк., 1986.- 400 с.
- 3) Баранов, Н.Н. Нетрадиционные источники и методы преобразования энергии: Учебное пособие для вузов / Н. Н. Баранов. М.: Издательский дом МЭИ, 2012. 384с.: ил.

8.2 Дополнительная литература

- 1) Алхасов, А.Б. Возобновляемые источники энергии: учебное пособие для вузов / А.Б. Алхасов. М.: Издательский дом МЭИ, 2011. 270 с.
- 2) Онищенко, Г. Б. Развитие энергетики России. Направления инновационнотехнологического развития [Электронный ресурс] / Г. Б. Онищенко, Г. Б. Лазарев. М.: Россельхозакадемия, 2008. 200 с. // ZNANIUM.COM : электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php?, ограниченный. Загл. с экрана.(дата обращения апрель 2021)
- 3) Основы современной энергетики: учебник для вузов: в 2 т. Т.1: Современная теплоэнергетика/ под ред. А.Д.Трухнин / под общ.ред. Е.В.Аметистова. М.: Издательский дом МЭИ, 2010. 470 с.

8.3 Методические указания для студентов по освоению дисциплины

1)Моделирование установившихся режимов работы систем электроснабжения: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. - Комсомольск-на-Амуре: $\Phi\Gamma$ БОУ ВО «КнА Γ ТУ», 2017. - 18 с.

- 2)Влияние компенсации реактивной мощности на работу систем электроснабжения: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2017. 18 с.
- 3)Встречное регулирование напряжения: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2017. 18 с..
- 4)Измерение переменного напряжения, тока и мощности при непосредственном включении измерительных приборов: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2014. 7 с.
- 5)Измерение переменного напряжения, тока и мощности при включении измерительных приборов через измерительные трансформаторы: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2014. 8 с.
- 6)Измерение активной электроэнергии переменного тока: методические указания к выполнению лабораторной работы / Сост. В.А. Размыслов. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2014. 6 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1 Электронно-библиотечная система ZNANIUM.COM. Договор ЕП 44 № 003/10 эбс ИКЗ 191272700076927030100100120016311000 от 17 апреля 2019 г.
- 2 Электронно-библиотечная система IPRbooks. Лицензионный договор № ЕП44 № 001/9 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 191272700076927030100100090016311000 от 27 марта 2019г.
- 3 Электронно-библиотечная система eLIBRARY.RU. Договор № ЕП 44 № 004/13 на оказание услуг доступа к электронным изданиям ИКЗ 191272700076927030100100150016311000 от 15 апреля 2019 г.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1 Электронные информационные ресурсы издательства Springer Springer Journals https://link.springer.com.
- 2 Единое окно доступа к образовательным ресурсам // Электронный ресурс [Режим доступа: свободный] http://window.edu.ru.
 - 3 Электронный портал научной литературы http://www.elibrary.ru.

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 10 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
MathCad Education	Договор № 106-АЭ120 от 27.11.2012

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;

- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 11 — Перечень оборудования лаборатории

Ауди-	Наименование ауди-	Используемое оборудование	
тория	тории (лаборатории)	попользуваю оборудование	
215/3	Лаборатория	Комплект типового лабораторного оборудования «Элек-	
	электроэнергетики	троснабжение промышленных предприятий» ЭППР1-С-Р.	

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.